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Abstract. Reducing the energy absorption of automatic machines used
in industry is one of the main goals towards the reduction of the car-
bon footprint, as well of the economic cost, of mass-produced goods.
Incorporating energy improvements to existing machines and established
technological processes can however be challenging, due to the complex-
ity of estimating with a sufficient level of detail the actual energy con-
sumption of a machine and even more by the difficulty of guessing the
required modifications that allow to reduce such energy consumption.
This work explores the possibility of using machine learning as a tool
that allows estimating the energy consumption of a transportation sys-
tem from a reduced set of numerical data that represent the main feature
of the motion profile, in order to develop a model to be used for planning
energy-efficient motion profiles. The investigation is based on experimen-
tal data gathered for a high-speed transportation device.
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1 Introduction

Reducing the energy consumption is one of the main challenge that society has
to face, owing to the impact of the use of non-renewable resources has on the
environment. The area for improvements in this sense is enormous, consider-
ing that current trends reveal that global energy demand is expected to grow
at a constant rate over the next decades [11], while the concern for the global
warming suggests a total and immediate inversion of this trend. Reducing energy
consumption in all sectors is of paramount importance for ensuring energy secu-
rity, sustainability, to reduce emissions and to support job creation [9]. Industry
must embrace this challenge by researching and implementing technologies that
allow to reduce the amount of energy involved in each process, allowing to 'do
more with less energy’. The call to industry for a greener production is clearly
outlined in the SDGI12 and SDGY9: the latter explicitly suggests to 'upgrade
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infrastructure and retrofit industries to make them sustainable with increased
resource-use efficiency and greater adoption of clean and environmentally sound
technologies and industrial processes’.

Researches have been working on the theoretical and technological issues of
measuring, estimating, predicting and finally improving the energy consumption
of automatic machines [14] and robots [3,12] for many years. A large part of
this research has analysed in the review work [5], which lists almost 100 works
published between 1993 and 2018. The improvement of the energy efficiency of
an automatic machine can happen at any level of its development, but whenever
possible, energy efficiency should be tackled at the design stage [2,10] by choos-
ing the appropriate components, but also focusing on just the design of motion
profiles can be a rather effective method to reduce energy consumption with-
out sacrificing productivity [1,4] and with a minimal investment. As a result,
large part of the literature on the topic has been focused on investigating the
relationship between motion profiles and energy consumption, here just a few
notable samples are cited. In the work [7] the authors focus on the analysis of
the dominant factor that influence energy consumption in a rest-to-rest motion
task, providing some general guidelines for the choice of the best profile among
standard ones. The work [6] proposed a radically different approach, in which a
trapezoidal motion profile is optimized in real-time to achieve minimum energy
consumption with limited residual oscillations. Finally, an analytic approach is
proposed in [14], by defining a set of analytic relationship that provide a sim-
ple but very effective parametrization of the overall energy consumption for any
constant inertia system and for any rest-to-rest motion profile. These work pro-
posed three radically different approaches, but they all are based on a somehow
detailed knowledge of the physical parameters of the system, and as such, their
accuracy and their practicality strongly depend on the possibility of getting such
data. This can be difficult - or even impossible - when the data disclosed by the
manufacturer are not sufficiently detailed. In order to overcome this frequent
issue, the use of machine learning algorithm is proposed in this work as a fea-
sible alternative to the most common physics-based models to develop energy
consumption models, using some data collected on the field and without involv-
ing any specific physical parameter of the device under investigation. The latter,
in particular, is an high-speed transportation system built by B&R, the ACO-
POStrack. The aim of the algorithm is to develop an energy estimation model
that relies just on some parameter that characterize the reference motion pro-
file to be executed by the machine, that is sufficiently accurate and robust to
enhance the energy efficiency of the device under investigation.

2 Machine Learning: Gaussian Process Regression

The model development procedure proposed here is based on the Gaussian Pro-
cess Regression (GPR). The latter is a probabilistic supervised machine learning
framework [13] that is used to predict continuous quantities. The basic idea of
supervised machine learning is to provide to the algorithm some input data, as
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Fig. 1. The experimental setup: B&R ACOPOStrack

well as the corresponding outputs, to be used to train the model to be developed.
In its most basic implementation, the model is built by fitting a set of data by
a non-linear regression form. Unlike a standard non-linear regression, the set of
infinite interpolating functions are described, rather than by standard functions,
by Gaussian processes. The latter are collections of random variables, any finite
number of which have consistent Gaussian distributions. A Gaussian process is
uniquely defined by a mean function m(z) and a covariance function K (z,z’),
so that the model that fits the data collected in x is represented as:

y = f(z) ~ GP(m(x), K(x,2")) (1)

The use of Gaussian processes allows to define, in a single object, an infinite set of
interpolating function, each one characterized by a mean value and a variance.
The method used here, which is based on the software implementation made
available by MATLAB, includes also a nonlinear regression term, as in:

y = h(z)" 8+ f(x) (2)

At the end of the iteration procedure, which strives at the best possible accuracy
in reproducing the input/output relationship, a single model is needed rather
than an infinite number of models described by some probability functions: the
one with the highest probability is chosen as the one best fitting the model. For
a more detailed explanation the reader might refer to the classic book [13]. In
most cases then, as is the case for this work, the set of available measurements
x is split into two parts, so that some measurements are used to train the deep-
learning algorithm, the other ones are instead used to evaluate the fitness of the
model.
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Fig. 3. Measured data: cart speed, phase currents and voltages

3 Experimental Data and Model Fitting

The ACOPOStrack (see Fig. 1) is a transportation system which allows to move
one or more shuttles along a sequence of stators, that can be arranged to create
‘tracks’. Each shuttle can carry a payload up to 1kg, and each shuttle can be
controlled independently from the others. The structure of each element of the
ACOPOStrack resembles the one of a Permanent Magnet Linear Synchronous
Motor (PMLSM). Each element of the track is a stator, composed in the case
under consideration by 42 coils, while the shuttle comprises 5 permanent mag-
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nets in alternate orientations [8], as shown in Fig. 2. When properly excited, the
stator coils produce a magnetic field that interacts with the ones of the magnets
on the shuttle, therefore exerting some force on it. The shuttle is kept at a fixed
distance from the stator by four rollers. The electromechanical modeling of the
ACOPOStrack is rather complex, as shown in the very detailed paper [8]. The
system is however built by PMSLSMs, which are essentially a linear version of
their more common ’circular’ counterparts. As such, they share the same work-
ing principle and similar modeling features, hence we can refer to the results
developed for traditional motors in terms on the estimation of their power con-
sumption. In particular, we might refer to the work of one of the authors [14], in
which a detailed analysis of the electric power consumption of a single axis servo-
actuated system with constant inertia is carried out. One of the main results of
the work is the development of analytic solutions to compute the energy required
by a rest-to-rest motion task. In particular, the paper highlights that for a given
device (and for a constant payload mass) such an energy consumption is a func-
tion of a limited set of variables, namely the total execution time of the motion,
T, the overall displacement h, the RMS velocity coefficient, ¢y ms, and the RMS
acceleration coefficient, c4pms, of the commanded the motion profile. The other
parameters involved in the estimation model are some physical parameters, some
of which are however hard to estimate with precision, such as friction forces, the
torque constant, the winding resistance, or the back-emf constant of the motor,
just to cite some of the most relevant ones. The proposed approach solves the
issue of providing precise and robust estimations for such parameters, as they
are not directly involved in the model tuning procedure operated by the machine
learning approach. The development of the model has been conducted by first
running a large set of experiments, by moving one shuttle each time according to
a different motion profile: the data set used for the experiments whose results are
presented here refer to 200 samples of profiles tuned with displacements ranging
from h = 0.05m to h = 0.10m, with execution times ranging from 7" = 0.08 s to
T = 0.5s, and using either a cubic or a quintic function to describe the motion
profile. The limitation of the displacement, in this preliminary study, is related
to the possibility of measuring the information of just four phases. The data
collected for each trial includes the position of the shuttle, the voltage and the
current of the four stator phases involved in the motion. One example of this
kind of measurement is found in Fig. 3.

The voltage-current product for each phase allows then to compute the
instantaneous power draw by it, which is then summed over the four coils and
integrated over time. Such calculation leads to the estimation of the energy con-
sumption associated with the execution of each motion task, which is displayed
in Fig. 4 for the motion of Fig. 3. Half of the 200 samples are used to train the
machine learning algorithm, while the other half is used to assess its prediction
capabilities. The input to the algorithm include four numeric data: the overall
displacement h, the total execution time T, the two RMS coefficients of velocity
and acceleration - i.e. the 4 relevant parameters that describe the motion profile.
It must be pointed out that the machine learning algorithm does not possess any
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Fig. 4. Measured data: electric power for each coil, total electric power, total absorbed
energy

other information. The output of the algorithm is the total energy consumption,
E, measured in Joules. The results of the estimation are shown in Fig.5: the
figure shows in the first plot the energy associated with the 100 samples used for
the results assessment: the estimated energy data, shown by blue dots, are com-
pared with their values as estimated by the machine learning procedure, which
are shown by orange circles. The likeness between the two is then measured by
the correlation coefficient R, whose value is found to be equal to R = 0.9983: its
proximity to one provides a first confirmation of the very good accuracy of the
method. The data are then characterized by the Mean Squared Error (MSE),
which is found to be equal to 0.0001248 J: the barplot on the bottom left-hand
side of the figure shows that for the vast majority of the trials the prediction
error is confined within £0.02 J. The distribution of the percentage error among
all 100 test samples is shown in the last graph: it shows that for 97 among the
100 samples the energy estimation error is with a £6% range. In all the other
three cases the prediction error does not exceed 10%. The overall Mean Absolute
Percentage Error (MAPE) is equal to just 1.892%. All these data suggest that
the proposed method is very effective in estimating the energy consumption from
a limited set of data.
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Fig. 5. (a) Comparison of measured and predicted energy consumptions, (b) correlation
chart, (c) prediction error distribution by MSE, (d) prediction error distribution by
MAPE

4 Conclusion

This work proposes some preliminary results on the possibility of using machine
learning methods to estimate the energy consumption of a servo-actuated system
with constant inertia. In particular, the Gaussian Process Regression method has
been used to develop a model that allows the prediction of the energy consump-
tion of an high speed transportation system when executing a rest-to-rest motion
task. The model has been trained using the data collected from a large num-
ber of experimental tests conducted by executing several motion profiles, during
which the electric energy consumption of the machine has been measured. As
a result of the training procedure, the prediction algorithm has proven to be
capable of high accuracy whilst relying on just a simple set of parameters for
the description of each experiment, namely the overall displacement, its dura-
tion, and the RMS coefficient of velocity and acceleration that characterize the
motion profile. Machine learning has therefore proved to be a feasible method
for energy estimation purposes, which defies the several challenges imposed by
a purely physical modeling.
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