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ABSTRACT 
In this paper, an effective method in dynamic modeling of 

spatial flexible-link robots under large displacements and small 
deformations is discussed and a generic MatlabTM software 
simulator based on it is presented and validated. The adopted 
method is based on an Equivalent Rigid Link System (ERLS) 
that enables to decouple the kinematic equations of the ERLS 
from the compatibility equations of the displacements at the 
joints allowing an easy and recursive procedure to build the 
robot dynamic matrices.  
The simulator is suitable for dynamic modelling of  generic 3D 
serial flexible-link robots. The MatlabTM software simulator is 
validated with respect to the Adams-FlexTM commercial 
software, which implements Floating Frame of Reference 
(FFR) formulation, one of the most used methods for dynamic 
modeling of multibody flexible-link mechanisms with large 
displacements and small deformations. 

Keywords: flexible-link mechanism, multibody systems, 
Equivalent Rigid Link System (ERLS).    

 
INTRODUCTION 
 Dynamic modeling and control of flexible-link robotic 
systems is an important field of scientific investigations. 
Indeed, nowadays, the research effort focuses on the 
improvement of the dynamic performances of the robotic 
systems by increasing the velocity and lightening the structure 
while maintaining a high degree of accuracy. Thus, complex 
and effective dynamic models have to be used since both 

inertial and elastic effects have to be taken into account being 
hypothesis of rigid links no longer valid. 

For multibody rigid flexible-link robotic systems, many 
dynamic models and formulations have been proposed in 
literature. The research covered the study of single flexible-
link mechanisms, then planar and finally spatial flexible-
mechanisms, and this topic is still an open field of 
investigation [1, 2, 13 and 16]. 

The classical approach used in multibody dynamics deals 
with mechanisms featuring large displacements and small 
deformations. Two main techniques have been adopted in 
literature [ 2, 4, 6, 7, 9 and 10]: the finite element method 
(nodal approach) and the assumed mode method (modal 
approach). Rigid body and elastic motion coupling effects 
have been considered in several works and approaches, firstly 
by considering only the effect of the rigid body motion on the 
elastic deformation [6, 9] and then by considering also the 
effect of the elastic deformation on the rigid body motion [10]. 
The outcome of these works is the Floating Frame of 
Reference (FFR) formulation [11, 12]. In the FFR formulation 
a first set of coordinates expresses the location and orientation 
of a local reference attached to each link, and a second set 
describes the deformation of the body with respect to its 
coordinate system. With this description a system of coupled 
differential equations is obtained being no separation between 
the rigid body motion and the elastic deformation of the 
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flexible body. A possible drawback of this approach is that the 
constraint conditions, i.e. the connections between different 
deformable bodies, are defined in the global coordinate 
system: the resulting constraint equations are coupled and do 
not have an immediate and easy formulation. Moreover, they 
are usually introduced into the dynamic equations by means of 
a set of nonlinear algebraic constraint equations, which depend 
both on the elastic deformations and on the reference rigid 
motion of the deformable bodies (e.g. through a vector of 
Lagrange multipliers). 

The method here proposed is intended for accurate 
dynamic modeling of systems with large displacements and 
small elastic deformation, and it is based on an Equivalent 
Rigid Link System (ERLS) concept introduced in [14, 15].  
This approach allows to decouple the kinematic equations of 
the ERLS from the compatibility equations of the 
displacements at the joints without neglecting the mutual 
influence between rigid body motion and vibration. One of the 
main advantages of the approach is that the standard robotics 
concepts of 3D kinematics can be adopted to formulate and 
solve the ERLS kinematics. The results can then be used and 
easily integrated in the equations of the dynamic model of the 
flexible multibody system. In literature, an ERLS based 
approach suitable only for the particular case of planar 
mechanisms with revolute joints has been presented and used 
in [3, 5].Recently, the ERLS concept has been applied for 
modeling of 3D flexible mechanisms [17]. 

  In this paper, the next sections cover the description of 
the kinematics and dynamics of the ERLS and of the flexible-
link robotic system. Then, the generic MatlabTM software 
simulator is  described. Finally the comparison between the 
FFR and ERLS results is presented.     

 
THE ERLS FORMULATION 
 
Kinematics 
 In the formulation here presented the elastic displacements 
are defined with respect to an Equivalent Rigid Link 
Mechanism (ERLS). Each link is subdivided into spatial beam 
finite elements modeled with the Euler-Bernoulli theory. If a 
fixed global reference frame {X, Y, Z} is defined, calling ui and 
ri the vector of the nodal elastic displacements of the i-th finite 
element and the vector of the nodal position and orientation for 
the i-th element of the ERLS respectively, the absolute nodal 
position and orientation of i-th finite element bi with respect to 
the global reference frame is: 

i i i
b =r +u  (1) 

Let wi and vi be the position vector of the generic point of 
the i-th element of the ERLS and its elastic displacement 
respectively, the absolute position pi of the generic point inside 
the i-th finite element is given by:   

i i i
p =w +v  (2) 

For each finite element, a local coordinate system {xi, yi, 
zi}, which follows the ERLS motion, can be defined. A local 
reference frame can be expressed with respect to global one by 
exploiting the ERLS, a rigid mechanism, thus by means of a set 
of generalized coordinates q, the m-rigid degrees of mobility of 
the mechanism. So, the Denavit-Hartenberg (DH) notation can 
be adopted to describe the kinematics of the ERLS. The nodal 
position and orientation vector ri for the i-th element can then 
be expressed with respect to a suitable local frame. All the ri’s 
can then be gathered into a unique vector r, representing the 
position and orientation of the whole ERLS. The variation dr, 
the velocity r  and acceleration r  of the vector r can be 
expressed, through the Jacobian matrix, as a function of the 
variation, velocity and acceleration of the vector of the 
generalized coordinates. 

 In order to correctly account for the displacement 
interpolations inside the finite elements, a local to global 
transformation matrix Ri (q) and a block-diagonal rotation 
matrix Ti

k(q) expressing the transformation from the frame k, 
in which are expressed the nodal elastic displacements of the i 
-th finite element uk

i, to the local reference frame, are defined. 
In order to apply the virtual work principle, the virtual 
displacements should be used. For the first term on the right 
hand side of the Eq. (2) expressed by means of virtual 
displacements, the interpolation function matrix Ni (xi, yi, zi) 
can be used to interpolate infinitesimal rigid-body 
displacements if the proper reference frames are employed, 
while for the second term both virtual nodal elastic 
displacements δuk

i and virtual displacements δq of the 
generalized coordinates have to be considered. The expression 
for the virtual displacements in the fixed reference frame 
becomes: 

( ) ( , , ) ( )

( ) ( , , ) ( ) ( ) ( , , ) ( )

( ) ( , , ) ( )

i k

i i i i i i k i

i k i k

i i i i i k i i i i i i k i

i k

i i i i i k i

p R q N x y z T q r

R q N x y z T q u R q N x y z T q u

R q N x y z T q u

δ δ

δ δ

δ

=

+ +

+

 

 
 
(3) 

 
 
 

 

The nodal displacement uk
i (the elastic displacement of the 

node) is assumed to be small with respect to the rigid body 
displacement of the ERLS. 

By differentiating twice, the expression of the acceleration 
of a generic point inside the i-th finite element can be 
computed: 

( ) ( , , ) ( ) ( ) ( , , ) ( )

2( ( ) ( , , ) ( ) ( ) ( , , ) ( ))

( ( ) ( , , ) ( ) 2 ( ) ( , , ) ( )

( ) ( , , ) ( ))

i k i k

i i i i i i k i i i i i i k i

i i k

i i i i i k i i i i i k i
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i i i i i k i i i i i k
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i i i i i k
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R q N x y z T q R q N x y z T q u

R q N x y z T q R q N x y z T q

R q N x y z T q

= +

+ +

+ +

+

  

  

  

 k

i
u

 

 
 

(4) 
 

where the term: k
ir  is the linear and angular acceleration of the 

i-th element of the ERLS expressed in the k-th reference frame. 
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If the kinematic entities of all the finite elements are 
grouped into a unique vector, taking into account Eq. (1), after 
differentiation holds: 

[ ]
du

db du dr I J
dq

= + =
 
  

 
 

(5) 
 

The coefficient matrix of the above Eq. (5) is not square; 
hence, a given configuration db of infinitesimal nodal 
displacements corresponds to more sets of increments [duT dqT] 
of the generalized coordinates of the system. The easiest way to 
eliminate this redundancy is to force to zero a number of 
elements of du equal to the number of generalized coordinates 
of the ERLS. If du is partitioned into its independent part (duin) 
and into its zeroed part (du0), and if J is correspondingly 
partitioned, the elements forced to zero can be eliminated from 
Eq. (5): 

0
0

in
I J du

db
J dq

=
   
     

 
 

(6) 
 

The square matrix of coefficient of Eq. (6) must be non-
singular, which implies that the determinant of J0 must be 
different from zero and no ERLS singular configurations have 
to be encountered during the motion. 

 
Dynamics 

By applying the principle of virtual work, the dynamic 
equations can be obtained: 

( )

i i i

T T T

i i i i i i i ii i iv v v

T T

inertia elastic external

p p dv D dv p g dv

u r f

W W W

δ ρ δε ε δ ρ

δ δ

δ δ δ

+ =

+ +

+ = −

    

 

 
 
(7) 
 

where Di, єi and ρi are respectively the stress-strain matrix, the 
strain vector and the mass density for the i-th element, g is the 
gravity acceleration vector, and f is the vector of the 
concentrated external forces and torques. The total virtual work 
is split into the integrals over element volumes νi and in the 
virtual work due to f; δu and δr refer to all nodes of the model. 
 
Compatibility Equations 

The formulation of the compatibility equations, i.e. the 
constraints due to the kinematic pairs, has to take into account 
the frame in which the nodal elastic displacements uk

i are 
expressed. 

Two consecutive links have different local frames, which 
are fixed according to the DH notation. In order to impose the 
compatibility conditions, the elastic deformations of last node 
of the i-th link and those of the first node of the (i+1)-th link 
must be expressed in the same local frame. Within a kinematic 
chain, for all the beam elements of a link except the last (i.e. the 
one connected to the following link), Ti

k,i is the blocked-
diagonal identity matrix, because the suitable reference frame k 
for expressing the elastic displacements uk

i of each node of the 
beam element coincides with the local link frame i. On the 
other hand, the elastic displacements of the last node of the i-th 
link have to be rotated into the local frame of the (i+1)-th link, 

so that the kinematic entities are defined with respect to the 
same reference system. If an open chain mechanism is 
considered, the elastic displacements of the last node of the 
final link are all expressed in the same correct local link frame.  
. The compatibility equations at the joints are written and 
included considering only the elastic displacements and are 
never used explicitly, since they are automatically taken into 
account when assembling the system matrices, thus avoiding 
the need to write a set of nonlinear algebraic constraints 
equations.   
 
Local Nodal and Global Equilibrium 

Nodal elastic virtual displacements δuk
i and virtual 

displacements of the ERLS δrk
i are completely independent. 

A first set of equilibrium equations, i.e.  The local nodal 
equilibrium equations can be obtained from Eq. (7) by 
considering: δri = 0; δRi = 0; δTi = 0; δui = 0; so Eq. (3) 
becomes: 

( ) ( , , ) ( )i k

i i i i i i k i
p R q N x y z T q uδ δ=  (8) 

  By considering Eq.s (4, 7, 8), the following holds: 
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δ

δ ρ δ δ

+
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+

= + +
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

 

 
 

 

       

 
 

(9) 

Where i
k,iT  is the block-diagonal matrix of the i-th element 

that expresses the relation between the appropriate k-th frame 
and the local i-th frame.  The elements of the mass, Coriolis, 
gyroscopic damping, centrifugal stiffness and stiffness 
contributions can be obtained from the integrals appearing in 
Eq. (9). 

Some terms contain the first and second order derivatives 
of the rotation matrices Ri and Ti

k,i, which is a block diagonal 
rotation matrix, that need to be computed. The ࡾపሶ  term can be 
easily expressed as: 

( )
i i i

R S Rω=  (10) 

where S (ωi) is the anti-symmetric skew matrix, function of the 
angular velocity ωi. Hence, also the Coriolis terms can be 
computed as functions of q and ࢗሶ , because the angular velocity 
ωi depends on q and ࢗሶ . In a similar manner, the second order 
derivatives and, thus, the centrifugal stiffness terms, can be 
expressed in an efficient and simple formulation. 

Finally, for the local nodal equilibrium expressed in Eq. 
(9), results: 

1 2

1 2 3

( ) 2 ( )

( 2 )

kT kT k

i i i i i G i G i ii i

kT k kT k

i C i C i C i i i i ii i

T T

i gii

u M r u u M M u

u M M M u u K u

u f u f

δ δ

δ δ

δ δ

+ + +

+ + + +

= +

 
 


  

 

 
 

(11) 
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A second set of equilibrium equations, i.e. global 
equilibrium, can be obtained by considering: δqj ≠  0, j = 1... n; 
δui = 0; So, Eq. (3) becomes: 

( ) ( , , ) ( )

( ) ( , , ) ( )

( ) ( , , ) ( )

i k

i i i i i i k i

i k

i i i i i k i

i k

i i i i i k i

p R q N x y z T q r

R q N x y z T q u

R q N x y z T q u

δ δ

δ

δ

=

+

+

 

 
 

(12) 

 
If δRi, δTi and δri terms are expressed as: 
 

( / ) 0

( / ) 0

( / ) 0

i i i j ij

i i i j ij

i i i j ij

R R q q R q

T T q q T q

r r q q J q

δ δ δ

δ δ δ

δ δ δ

′= ∂ ∂ = ≠

′= ∂ ∂ = ≠

= ∂ ∂ = ≠





 

 
 

(13) 

Eq. (12) results: 

(

(

(

( ) ( , , ) ( ) ( ) )

( ) ) ( , , ) ( )

( ) ( , , ) ( ) )

i k

i i i i i i k i

i k

i i i i i k i

i k

i i i i i k i

J

R

T

p R q N x y z T q q q

q q N x y z T q u

R q N x y z q q u

δ δ

δ

δ

′

=

+

′+

 

 
 

(14) 

Now, if the orders of magnitude of the three terms in Eq. 
(14) are compared, it can be said that all the terms contain the q 
virtual displacements and matrices of the same order of 
magnitude. 

The second and third term count the u vector that is small 
(i.e. we are in the small displacement condition). Thus, the 
second and third terms are here neglected being their order of 
magnitude lower with respect to the first term. Eq. (14) 
becomes: 

( ) ( , , ) ( ) ( )i k

i i i i i i k i
p R q N x y z T q J q qδ δ=  (15)

If Eq.s (4, 8, and 15) are considered, the following 
expression can be obtained: 

( )
( )
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δ
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+

+ + + + +

+
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

 

 
 

 

       

 
 

(16) 

The integrals that rise from the inertia virtual work term 
are the same previously evaluated. The ࢀߜ௞,௜௜,் terms in the 
elastic virtual work term in Eq. (16) can be transformed into an 
equivalent form by taking into account the Eq. (13): 

 

( )

, ,

, ,

, , 1,

T i T T i

i k i i i i k i ii vi

T T i T T i

i k i i i i k i ii vi

T T i T T i T T
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δ

δ

δ δ

′

′
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= =
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 
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(17) 

 
Thus, for the global equilibrium results: 

[
]

( )

1 2

1 2 3 1,

( ) 2( )

( 2 )

T T

G G

T T

C C C i i ii

T T

g

q J M r u M M u

M M M u u q K u

q J f f

δ

δ

δ

+ + +

+ + + +

= +


  

 

 
 

(18) 

 
Now, by considering the equilibrium of the elastic forces 

with respect to all others in Eq. (11) and substituting in Eq. 
(18), this latter can be rewritten as: 

1,
0T T T T

i i i i i i

i i

u q K u q J K uδ δ− =   (19) 

This equation shows that the first term can reasonably be 
neglected, because small displacement assumption ensures that ்࢛࢑்ࢗࢾ૚,࢛࢏ is negligible with respect to ࢏࢛࢏ࡷࢀ࢏ࡶ்ࢗࢾ. The 
following system of differential equations, that contains local 
nodal and global equilibrium equations, is obtained by 
computing the sums for all the elements of the mechanism: 

[
]

( )

1 2

1 2 3

( ) 2( )

( 2 )

T

G G

C C C

T

g

T

u M r u M M u

M M M u u Ku

u f f

δ

δ

δ

+ + +

+ + + +

= +
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(20) 

[
] ( )

1 2

1 2 3

( ) 2( )

( 2 )

T T

G G

T T

C C C g

q J M r u M M u

M M M u q J f f

δ

δ

+ + +

+ + + + = +

  
 

 
(21) 

 
The infinitesimal displacements of the ERLS can be 

expressed by means of the Jacobian matrix so that δu’s and the 
δq’s can be eliminated from Eq. (20) and Eq. (21). Hence, the 
following system of differential equations is obtained: 

( )
1 2

1 2 3

( ) 2( )

( 2 )

G G

C C C g

M r u M M u

M M M u Ku f f

+ + +

+ + + + = +

  
 

 
(22) 

( )
1 2

1 2 3

( ) 2 ( )

( 2 )

T T

G G

T T

C C C g

J M r u J M M u

J M M M u J f f

+ + +

+ + + = +

  
 

 
(23) 

 
Where, again, Eq. (22) is a statement of nodal equilibrium, 

i.e. equivalent loads applied to each node must be in 
equilibrium, whereas Eq. (23) is a statement of overall 
equilibrium, i.e. all equivalent nodal loads applied to the 
linkage produces no work for a virtual displacement of the 
ERLS. 

In a realistic situation dealing with flexible manipulator 
systems, damping is usually present and is here taken into 
account by using the Rayleigh model of damping.  Thus, Eq. 
(22) and Eq. (23) become: 

 

( )
1 2

1 2 3

( ) 2( )

( 2 )

G G

C C C g

M r u M M u Mu Ku

M M M u Ku f f

α β+ + + + +

+ + + + = +

    
 

 
(24) 
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( )
1 2

1 2 3

( ) 2 ( )

( 2 )

T T T

G G

T T

C C C g

J M r u J M M u J Mu

J M M M u J f f

α+ + + +

+ + + = +

  
 

 
(25) 

Dynamic equations, after the substitution of the second 
order differential kinematics equations of the ERLS, can be 
grouped and rearranged in matrix form after discarding the 
equations for the elastic degrees of freedom that have been 
zeroed: 

 

( ) ( )
( )( ) ( )
1 2 1 2 3

1 2 1 2 3

2 2

2 2

(26)

T T

G G C C C

T T T

G G C C C

T T

M MJ u

qJ M J MJ

u
M M M K MJ M M M K

q
J M M M J MJ J M M M

q

M I g

fJ M J

α β

α

=

− + − − − − + + −

− + − − − + +

+

   
     

 
   
       

   
     









 

 

 
In this way, the values of the accelerations can be 

computed at each step by solving the system Eq. (26), while the 
values of velocities and of displacements can be obtained by an 
appropriate integration scheme (e.g. the Runge-Kutta 
algorithm). 

MATLABTM SOFTWARE SIMULATOR 
According to the method mentioned in previous sections, a 

generic MatlabTM software simulator has been developed which 
is suitable for modeling and dynamic simulating serial flexible-
link 3D robots.  

Since the ERLS formulation allows to exploit the DH 
notation and the main concepts of robotics kinematics, it allows 
to study the dynamics flexible-link robotic systems without 
differences with respect to the rigid ones. This can be 
considered an useful feature of the formulation and allows to 
justify the implementation of a generic software based on the 
ERLS. 

The MatlabTM simulator is structured in three main parts: 
 
a) The first is related to the DH, geometrical and 

mechanical parameters definition. 
In this part, the main concepts of robotics kinematics, e.g. 

Denavit-Hartenberg notation, have been exploited in order to 
give to the user the possibility to create a generic serial robot. 

The starting page of the simulator user Interface is 
presented as a list of pre-analyzed robots which have been 
previously evaluated from the symbolic point of view. In this 
case, the user can decide which configuration of the robots 
wants to load. Robots provided by default have been chosen 
considering the benchmarks proposed by the literature of 
multibody dynamics and the most common serial spatial robots. 
They are as follows: 

 

• Simple pendulum; 

• Planar double pendulum; 
• Spatial double pendulum; 
• Anthropomorphic manipulator; 
• Anthropomorphic robot with spherical wrist; 
• Manipulator DLR with spherical wrist. 
 
Alternatively, the user can place any other mechanisms to 

analyze with pressing the New Configuration button. The first 
menu of the simulator is shown in Figure 1. 

Once one of the options is chosen by the user,  a second 
interface is loaded; in this page the kinematic, geometrical and 
mechanical data essential for the definition of the robot are 
required . 

To describe unambiguously the type of manipulator that is 
to be analyzed from the kinematic point of view, the simulator 
asks DH parameters in this page.  

The additional parameters that have to be entered by the 
user are related to characteristics of each link of the robot. In 
particular, the length L [m], the width in y direction [m], the 
depth in the z direction [m], the density [kg /m3], the module of 
elasticity E [N / m2], the coefficient of Poisson ν and, finally, 
the number of elements for each link have to be defined. 

Also, the user must enter other effective parameters on the 
mechanism performance, like the direction the force of gravity 
which can be in the direction of y axis or z axis, and the 
damping coefficients. 

The final set of data, that covers a very important aspect of 
the entire analysis, is the inhibited degrees of freedom, i.e. 
degrees of freedom that are set to zero. 

 
b) The second is related to the symbolic matrix calculus  of 

the dynamic model and to the visualization of the mechanism; 
After loading and defining the data to the simulator, by 

pressing the Robot Looks button the simulation begins. The 
purpose of this phase is to create and build all the necessary 
data to perform the dynamic analysis of the chosen spatial 
robot.  

First of all the parameters are checked in order to evaluate 
their feasibility; after that the first and second order kinematics 
are computed; then, an iterative symbolic algorithm, based on 
the previously described ERLS formulation, allows to build the 
main matrices of the dynamic formulation; finally all the 
symbolic variables and created symbolic matrices such as 
Jacobian matrix, mass matrix, stiffness matrix, Coriolis and 
external forces matrices are saved.  

The procedure is completely iterative and the constraint 
equations are automatically taken into account when 
constructing the matrices allowing to avoid the need of a new 
set of equations. Matrices are computed along the links chain 
starting from the chassis.  

After the initial calculation of the characteristic matrices of 
the robot, the simulator plots the position of the entire 
mechanism as shown in Figure 2. The upper figure shows the 
robot with the main frames according to DH parameters while 
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the bottom figure shows the robot where the local reference 
coordinate frames are highlighted.  

c) The third part is related to the dynamic simulation and 
results evaluation. 

The dynamics of the system are implemented and 
simulated thanks to the Simulink toolbox of MatlabTM. 

The time of simulation and the solver to use in Simulink 
are the two parameters that are introduced directly while 
external input forces or torques have to be loaded and defined 
in the Simulink environment. After that, the system in a static 
condition is evaluated in order to obtain the initial conditions of 
the system. Then, the real values are substituted into the 
symbolic part. Finally,  by using and linking the suitable 
MatlabTM functions in Simulink, the dynamic behavior of the 
robot is simulated and the results visualized and saved.  

The simulator, as output, plots the displacement of the 
nodes of the system according to the time and also the 
trajectory followed both by the flexible-link robot and by the 
chosen ERLS. 

 
 

 
Figure 1. The first menu of the simulator 

 
 

SIMULATION RESULTS 
In order to show the capabilities of the simulator and to 

validate if, the ERLS simulation results are compared with 
those obtained by means of the Adams- FlexTM software that 
exploits the FFR approach and models the flexible mechanisms 
by means of a component mode synthesis (CMS) technique 
based on the Craig-Bampton method [8]. 

In this paper, two different mechanisms have been 
considered as benchmarks: 

 
a) The first mechanism considered as a benchmark is a 

three degrees of freedom anthropomorphic robot (Figure 3) 

which main kinematic, geometrical and mechanical 
parameters are shown in Table 1. It has three links end three 
revolute joints 

 

 
Figure 2. Starting position of the entire mechanism for 

anthropomorphic robot 
 

The beam section is rectangular and external forces and 
torques are present as gravity effect and torque applied on the 
first joint. For each link of the mechanism, only two beam 
elements (thus three nodes) has been considered, so nine nodes 
and three rigid degrees of freedom (represented in Figure 4 as 
q1, q2 and q3) are present.    

In order to fulfil the data requested, the fake degrees of 
freedom have to be considered and the related equations 
inposed. Let sx(i), sy(i), sz(i) be the X, Y and Z displacement of 
the i-th node and let srx(i) and sry(i) be the X and Y rotations, 
respectively, the compatibility equations impose: 

(1) (1) (1) 0; (1) (1) 0

(3) (4); (3) (4); (3) (4)

(3) (4); (3) (4)

(6) (7); (6) (7); (6) (7)

(6) (7); (6) (7)

x y z rx ry

k k k k k k

x x y y z z

k k k k

rx rx ry ry

k k k k k k

x x y y z z

k k k k

rx rx ry ry

s s s s s

s s s s s s

s s s s

s s s s s s

s s s s

= = = = =

= = =

= =

= = =

= =

 

 
 
 

(27) 

Where k superscript refers to a generic common local 
frame. Now to be able to correctly define the ERLS, values of 
the elastic displacements of the three among the remaining 
degrees of freedom must be zero. In this case, three sets of 
degrees of freedom have been chosen: 

(3) 0; (4) 0; (7) 0k k k

rz rz rz
s s s= = =  (A) 

(3) 0; (4) 0; (9) 0k k k

rz rz rz
s s s= = =  (B) 

(3) 0; (6) 0; (9) 0k k k

rz rz rz
s s s= = =  (C) 
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in order to simulate the flexible-link mechanism with different 
equivalent rigid-link systems and show the effectiveness of a 
correct choice.  

In the first simulation, Rayleigh damping coefficients are 
introduced as α=0.087 and β=0.0021, the Young’s module is 
9*109(N/m2) and the input torque is applied on the first joint. In 
this case, for zeroed degrees of freedom in MatlabTM software 
simulator, set of A has been chosen.  

The Y coordinates of the tip of the second and third links 
of the anthropomorphic robot for the three selected sets of 
degrees of freedom have been plotted in Figures 4 and 5 where 
the simulation result of the three sets can be seen. 
 

Table 1 Mechanism parameters 

 

 
Figure 3Anthropomorphic robot 

 
 

 
Figure 4Tip of the 2nd link Y-coord 

 
A second simulation has been carried out by changing 

some parameters: the Rayleigh damping coefficients are set to 
α=0.087 and β=0.0021 and the Young’s module to 
5*1010(N/m2). The input torque is applied on the first joint and 
its trend is the one shown in Fig.3. The zeroed degrees of 
freedom in MatlabTM software simulator have been chosen as 
the A set previously defined. The positions of the first and third 
links of anthropomorphic robot are compared with the results 
provided by the AdamsTM software and plotted (Figures 6, 7, 8 
and 9) showing a very good agreement both in amplitude and 
frequency. 
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Figure 5 Tip of the 3rd link Y-coord 

 
 

 
Figure 6 Tip of the 1st link Y-coord 

   

 
Figure 7Tip of the 1st link X-coord 

 
 

 
Figure 8 Tip of the 3rd link X-coord 
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Figure 12Tip of the 2nd link 

CONCLUSIONS 
In this paper the dynamic formulation for flexible-link 

mechanisms based on an ERLS approach, where the basic idea 
is to decompose the overall motion of the mechanism into the 
rigid motion of a suitably defined ERLS and an overlapped 
elastic motion, has been evaluated. After the kinematic 
formulation, the equations of motion for the flexible 
mechanism have bene obtained by direct application of the 
virtual work principle. 

A generic MatlabTM software simulator that allow to 
simulate rigid-flexible-link systems, based on ERLS approach, 
has been implemented and is presented in this paper. Thanks to 
the ERLS based formulation, since it exploits the DH notation 
and the main concepts of the robotics kinematics, the approach 
to the flexible-link robots remains the same of the rigid ones 
allowing an easy approach. Then, in order to show the 
effectiveness of the method and of the simulator, different 
behaviors of specific robots with respect to different working 
conditions and mechanical parameters have been  investigated.  

The results have been compared with respect to AdamsTM 
showing a very good agreement (the small difference is because 
of defining ERLS) and, hence, the effectiveness of the method 
and the simulator.  
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