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ABSTRACT
Planning smooth trajectories is crucial in the most advanced

robotic applications in industrial environments. In this paper two
novel trajectory planning methods for robotic manipulators are
introduced, named ”545” and ”5455”. Both methods are based
on an interpolation of a sequence of via points using a combi-
nation of 4th and 5th order polynomial functions. These tech-
niques allow to obtain a continuous-jerk trajectory for improved
smoothness and minimum excitation of vibration. By using the
”545” method, null jerk at initial time can be achieved, while
with the ”5455” method one can impose an arbitrary value of
jerk at both the first and the last via-point. The outcome of both
methods is the optimal time distribution of the via points, with
respect to a predefined objective function. Results are provided
for a 3 d.o.f. Cartesian manipulator, but the techniques maybe
applied to any industrial robot.

INTRODUCTION
The development of trajectory planning algorithms for in-

dustrial manipulator is a fundamental topic in robotics engineer-
ing. Severe vibrations arise in manipulators when they are moved
along a non-smooth trajectory. In that case worsening of ac-
curacy, premature joint wear and mechanical failures mightoc-
cur. Therefore in the last decades a large number of techniques

∗Address all correspondence to this author.

have been developed to design smooth trajectories for industrial
robots [1]. Both online and off-line techniques have been devel-
oped: this work falls into the latter category. Another fundamen-
tal distinction between the several methods available in literature
is the use of a model-based or of a model-free approach. While
model-based approaches can achieve good results in a specific
case [2], they lack the generality which is a fundamental require-
ment for most industrial application. The development of anac-
curate dynamic models of a robotic manipulator is a rare practice
in most industrial facilities, due to the low level of perceived po-
tential economic advantage and the general lack of the required
know-how. Therefore model-free approaches, as the one pre-
sented in this paper, are much more appealing for today’s market.

In this paper two novel trajectory planning algorithms for in-
dustrial robot are presented. Such algorithms produce an optimal
trajectory starting from a set of via-points, i.e. they adjust the dis-
tance between two consecutive via points in order to minimize a
cost function of choice. Constraints on velocity, acceleration and
jerk at each joint can be specified as inputs of the optimization
procedure. Similar approaches can be encountered quite often in
literature, since many methods are available to produce a time
law which interpolates or approximate a set of via-points. These
works can be classified on the base of different features, such
as the choice of the cost function and of the primitive functions
used for the interpolation procedure. The paper [3] introduces
a method for the evaluation of minimum jerk trajectories as a
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global constrained minimax optimization problem. The inter-
polation is based on a sequence of cubic polynomial functions.
Continuous jerk can be achieved by this method, which on the
other hand has high computational demands. Literature on tra-
jectory planning has in many cases highlighted the worsening on
motion accuracy and the increased level of vibration on the end-
effector caused by high level of acceleration and jerk (i.e.the
time derivative of acceleration), as in [4, 5]. In particular Zefran
et. al. in [6] shows that smooth trajectories (i.e. trajectories
without jerk discontinuities) are to be preferred to complywith
the physical limitation of the actuators and with the limitsof the
control system bandwidth, and that non-smooth motion can ex-
cite the structural natural frequencies of the system. A possible
solution to the problem of jerk continuity has been solved bythe
use of fifth order B-spline together with a composite time-jerk
cost function are used in [7, 8]. Other popular techniques are
based on simpler interpolation functions, such as the ”343”ap-
proach developed by Ho and Cook in [9]. Such method relies on
the use of spline functions, but does not guarantee the continu-
ity of jerk along the trajectory. Such problem has been solved
by Petrinec and Kovacic in [10], trough the development of the
”445” trajectory. Such approach makes use of an interpolation
function composed by a sequence of 4th order polynomial func-
tions, with a 5th order function for interpolating the motion be-
tween the last two via-points. The use of polynomial functions of
even high order allows to produce motion profiles with superior
smoothness, but at the cost of a general increase of peak values
of speed and acceleration, if a constant total execution time is
considered. An example of the use of polynomials functions up
to the 9th order can be found in [11].

The two innovative methods presented here are based on
two new composite trajectory primitives. The first one, named
”545”, uses a 5th order polynomial function as the primitive for
the first and the last segment of the trajectory, while intermediate
segments are described by 4th order polynomial functions. This
choice, together with a suitable choice of the continuity condi-
tions at each via-point, ensures that:

1. jerk is continuous along the whole trajectory
2. an arbitrary jerk value can be specified for the first point of

the trajectory

While the first feature is shared with other algorithms, such
as the ones that are based on cubic splines [12], many approaches
do not allow for the operator to choose all the kinematic param-
eters for the first and the last point of the trajectories. As it will
be shown in the paper, this feature allows to produce trajectories
with null acceleration and jerk at the extreme point of the trajec-
tory. The resulting motion profile is therefore smoother, soit will
induce a reduced level of vibration to the robot structure. The
second algorithm proposed in this paper is a modified version
of ”545”, named ”5455”, which allows to impose an arbitrary
value of the jerk, as well as acceleration and velocity, at both the

first and the last via point. This feature can be efficiently used to
maximize the smoothness of the motion profile during the criti-
cal phase of start-up and resting of the robot. Moreover the free
choice of initial and final jerk allows to retain maximum smooth-
ness even in the case of the cyclical repetition of the same task,
which is case often encountered in industrial applications. More-
over, the two novel methods proposed here are of straightforward
implementation. As it will be shown in the paper, the compu-
tation of the trajectory requires to find the optimal set of time
intervals between two consecutive via points. This is a problem
that can be solved quite easily and in a relatively short timeby
using standard optimization routines, such as Matlab’sfmincon.
The aforementioned optimization problem is constrained, but its
solution is generally not critical, since all the constraints can be
expressed as an explicit function of the optimization variable, i.e.
the set of time intervals between two via-points.

The evaluation of the effectiveness of the proposed trajec-
tories is conducted by means of extensive experimental results.
A three degrees-of-freedom Cartesian manipulator is chosen for
testing the novel approach proposed here. Numerical evidences
confirm that the proposed method achieves a good level of per-
formance when compared to other popular trajectory planning
algorithms [3,7,10,13]. The cost function on which the optimiza-
tion procedure is based is the well known minimum time, which
has proved to be a popular choice [14–16], given the appeal of
its potential economic advantage for most industrial applications.
Here only the case of minimum time with kinematic constraints
is considered, but the two novel ”545” and ”5455” primitivescan
be used as a starting point for other innovative methods, simply
by changing the choice of the goal function.

1 THE ”445”, ”545” and ”5455” TRAJECTORIES
In order to give the clearest explanation possible of the in-

novative ”545” trajectory, the ”445” trajectory is introduced first.
The description is made as brief as possible to meet the space
constraints of a paper, for a more detailed description please see
[10]. Let us consider a trajectory to be planned fromN via points
P1 . . .PN in the joint space, supposed to be known trough the use
of a generic inverse kinematic algorithms from their equivalents
in the operative space.

The ”445” trajectory
If the ”445” trajectory is considered, 4th order polynomial

function are used to describe all the segments between the via
points, with the exception of the last one, for which a 5th order
is used. Therefore the trajectory between the two adjacent via-
pointsPk+1 (1≤ k≤ N−2) can be written as:

Fk(t) = Bk,1+Bk,2t +Bk,3t
2+Bk,4t

3+Bk,5t
4 (1)
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in which F(t) represents the position of a joint of the robot
under consideration. The boundary conditions for the segment
under consideration can be expressed as:

Fk(0) = Pk

Fk(Tk+1) = Pk+1

vk(0) = vk

vk(Tk+1) = vk+1

ak(0) = ak

(2)

in which vk e vk+1 are the joint velocities andak, ak+1 are
the accelerations at the pointsPk andPk+1, respectively. Using
Eqn. 1 in Eqn. 2, one obtains:

Fk(0) = Bk,1 = Pk

vk(0) = Bk,2 = vk

ak(0) = 2Bk,3 = ak

Fk(Tk+1) = Bk,1+Bk,2Tk+1+Bk,3T2
k+1+

+Bk,4T3
k+1+Bk,5T4

k+1 = Pk+1

vk(Tk+1) = Bk,2+2Bk,3Tk+1+3Bk,4T2
k+1+4Bk,5T3

k+1 = vk+1

(3)

Eqn. 3 can be expressed for 1≤ k≤ N−2 as:
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(4)
The matrix equation above allows to evaluate the coeffi-

cients of the polynomial functions for the whole trajectory, with
the exception of the last segment, which must take into account
also the constraint on the continuity of acceleration:

aN−1(TN) = aN (5)

Such segment is defined as the 5th order polynomial func-
tion:

FN−1(t) = BN−1,1+BN−1,2t +BN−1,3t2+
+BN−1,4t3+BN−1,5t4+BN−1,6t5 (6)

Therefore the boundary conditions for the last segment of
the trajectory (0≤ t ≤ TN−1) are:

FN−1(0) = BN−1,1 = PN−1

vN−1(0) = BN−1,2 = vN−1

aN−1(0) = 2BN−1,3 = aN−1

FN−1(TN) = BN−1,1+BN−1,2TN +BN−1,3T2
N+

+BN−1,4T3
N +BN−1,5T4

N +BN−1,6T5
N = PN

vN−1(TN) = BN−1,2+2BN−1,3TN +3BN−1,4T2
N+

+4BN−1,5T3
N +5BN−1,6T4

N = vN

aN−1(TN) = 2BN−1,3+6BN−1,4TN +12BN−1,5T2
N+

+20BN−1,6T3
N = aN

(7)

All the constraints above can be described by a single matrix
equation:
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(8)
The velocitiesvk and accelerationsak can be determined

using the conditions of continuity of acceleration and jerkat
the via-points. Given the three via-pointsPk, Pk+1 and Pk+2

(1≤ k ≤ N−4), the acceleration at the end of the first segment
is:

ak(Tk+1) = 2Bk,3+6Bk,4Tk+1+12Bk,5T2
k+1 (9)

The value of jerk at the end of the first segment is:

jk(Tk+1) = 6Bk,4+24Bk,5Tk+1 (10)
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Similarly, the acceleration and the jerk at the beginning of
the second segment are:

ak+1(0) = 2Bk+1,3 (11)

jk+1(0) = 6Bk+1,4 (12)

The constraint on continuity of acceleration requires that
ak(Tk+1) = ak+1(0), thus obtaining:

6
Tk+1

vk+ak+
6

Tk+1
vk+1−ak+1 =

12

T2
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At the same way, continuity of jerk can be obtained using
Eqn. 10 and 12, leading to:
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(14)

aN−2(TN−1) = aN−1(0) (15)

jN−2(TN−1) = jN−1(0) (16)

Substituting the right values in Eqn. 15 and 16 leads to:
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The results in Eqn. 13–18 can be merged in a single matrix
equation. A matrixM can be defined and used for evaluating
theN−2 unknown velocities andN−2 accelerations at the via-
points, i.e. the matrixD. H is the vector of time intervals between
two consecutive via points. MatrixM , D andH have sizes,(2N−

4)× (2N−4), (2N−4)×1 and(2N−4)×1, respectively.

MD = H (19)
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in which:
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The expression of matrixM is not reported here, due to the
space constraints of the paper, but can be found in [10].

The novel ”545” trajectory
The novel ”545” trajectory introduced in this paper has been

developed in order to solve the problem of the nonzero jerk at
the beginning of the trajectory. The ability to choose the ini-
tial jerk allows us to obtain a trajectory which is smooth during
the critical phase of starting the motion of the robot from a rest
condition. In real application, this translates in a lower level of
vibration, a more accurate reproduction of the planned trajectory
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and a lower mechanical stress to the robot structure during the
whole task, comparing to the results that can be achieved with
the ”445” algorithm. On the other hand, numerical evidences
shows that for the same kinematic constraints, i.e. limits on ve-
locity, acceleration and jerk at the joints, a higher total execution
time is obtained. will be shown in detail inSection X.

In order to compute numerically a trajectory according to the
novel ”545” algorithm and using the same notation of Eqn.19,
new expressions must be computed for matricesH, D and H.
The changes form the ”445” algorithm are:

1. the interpolating function for the first segment of the trajec-
tory is now a 5th order polynomial function: the new coeffi-
cients are shown in Eqn.22.

2. the first two rows of matrixM and of the vectorH are dif-
ferent: the new expressions are sown in Eqn. 23 and in Ap-
pendix A.

The new continuity conditions between the first and the sec-
ond segment of the trajectory can be expressed according to the
following matrix equation:
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(22)
The other continuity conditions are the same as the ones pre-

viously shown for the ”455” method. Using the notation intro-
duced in Eqn.19, the new values for the first two rows of arrayH
are:

h1 =
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T2 j1

h2 =
120

T3
2

(P1−P2)+
24

T3
3

(P2−P3)+
84

T2
2

v1+
24
T2

a1+3 j1
(23)

The correct formulation for matrixD is reported in Ap-
pendix A.

The ”5455” trajectory
The novel ”5455” trajectory is meant to be an improved ver-

sion of trajectory ”545”. This primitive function is based on the
use of 5th order polynomial functions for the first and the last two

segments of the trajectory. All the other segments are described
by 4th order polynomial functions. In this way, it is possible to
achieve the following goals:

1. jerk is continuous for the whole trajectory
2. the value of jerk at the first and last via point can be imposed

It should be pointed out that with the ”445” trajectory the
jerk at the first and last via points cannot be imposed arbitrarily.
On the other hand, the ”545” trajectory only allows to choose
the value of the jerk only at the first via point. Therefore the
choice of a ”5455” trajectory sports an extra degree of freedom,
in comparison to the ”545”. When planning a ”5455” trajectory,
the user might choose to achieve a null jerk at the extremities of
the path (i.e. j0 = 0 and jN = 0), or he can choose to impose
two arbitrary values forj0 and jN. The first choice has more ap-
peal when maximum smoothness is the goal, while the second
one can be efficiently exploited when the trajectory planning in-
cludes a composite trajectory. One example of a profitable use of
nonzero initial and final jerk is the planning of trajectories with
repetitive tasks. In this case, the user might want to plan the
whole trajectory in this way:

1. plan the trajectory for the first cycle withj0 = 0 and jN = j∗

2. plan all the intermediate cycles withj0 = jN = j∗

3. plan the last cycle withj0 = j∗ and jN = 0

In this way a complex trajectory with repetitive cycles can
be planned obtaining zero initial and final jerk, and continuity
of jerk can be achieved along the whole path as well. This goal
cannot be achieved neither with the ”445”, nor with the ”5455”
trajectory.

The continuity conditions for the ”5455” trajectory are the
same as the ones for the ”545”, except for the last two segments
of the trajectory. The new continuity conditions expressedin
matrix form are:
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(25)

h2N−7 =
6

T2
N−2

(PN−2−PN−3)

h2N−6 =
8

T3
N−2

(PN−2−PN−3)+
10

T3
N−1

(PN−1−PN−2)

h2N−5 =
20

T2
N

(PN −PN−1)−
12
TN

vN +3aN −
1
3

TN jN

h2N−4 =
20

T3
N−1

PN−2− (
20

T3
N−1

−
40

T3
N

)PN−1−
40

T3
N

PN+

+
84

3T2
N

vN −
8

TN
aN + jN

(26)

The above conditions can be used to compute the new cor-
rect formulation for matrixM , which is reported in Appendix
A.

NUMERICAL RESULTS
The objective of the trajectory generation problem consid-

ered in this paper is to produce a trajectory in the joint space,
given a set of via-points defined in the operative space. The re-
sulting trajectory must respect some kinematic constraints, and
be optimal in the sense of a given cost function. The kinematic
constraints are used to adapt the algorithm to the specific robotic
manipulator under consideration. This is a feature of paramount
importance in all industrial applications, where the datasheet val-
ues of the manipulator must be carefully taken into account for
many reasons, including safety. Here it has been chosen to set
hard constraints on the maximum and minimum values for the
velocity, the acceleration and for the jerk at each joint. Itshould
be pointed out that a limit on the maximum value of the jerk can
also be used to control the smoothness of the trajectory. Since the
jerk limit can be chosen freely, trajectories with arbitrarily high
smoothness can be achieved, at the cost of obtaining an higher
execution time. For the tests presented in the following section,
symmetrical limits have been used. Moreover identical values
have been used for all the joints, but the algorithm developed by
the Authors allows to use also limit values which are not sym-
metrical and not uniform for all the joints.

The cost function of choice is the well known minimum
time, i.e. the objective of the trajectory planning algorithm is to
generate the trajectory which has the minimum overall execution
time, within the constraints mentioned above. Other choices are
possible too, such as minimum energy, minimum jerk, or mini-
mum time-jerk, as in [13].

The optimization problem can be stated as:















































min
h

vp−1

∑
i=1

hi

subject to:

Vmin ≤ q̇ j(t)≤Vmax j = 1. . .N
Amin ≤ q̈ j(t)≤ Amax j = 1. . .N
Jmin ≤

...
q j(t)≤ Jmax j = 1. . .N

(27)

with:

h =
[

h1,h2, . . . ,hvp−1
]

(28)

TABLE 1 . NOMENCLATURE FOR EQN.27

Symbol Definition

N Number of robot joints

vp Number of via-points

hi Time interval between two via-points

q̇ j(t) Velocity of thej th joint

q̈ j(t) Acceleration of thej th joint
...
q j(t) Jerk of thej th joint

Vmin, Vmax Velocity limits for thej th joint

Amin, Amax Acceleration limits for thej th joint

Jmin, Jmax Jerk limits for thej th joint

Once a set of via points in the operative space is defined, the
trajectory planning algorithm proposed in this paper follows the
sequence of steps:

1. the set of via-points in the joint space is automatically gen-
erated, by means of a kinematic inversion routine
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FIGURE 1. PROTOTYPE OF THE CARTESIAN ROBOT, MECHA-
TRONICS LAB, UNIVERSITY OF UDINE, ITALY

2. the speed, acceleration and jerk constraints according to the
manipulator structural constraints and to the required level
of smoothness are set by the used

3. an initial solution for the vector of time intervalsh is pro-
vided to the algorithm

4. the optimization problem defined in Eqn. 27 is solved by a
specific program. The outcast of the problem is the vectorh
of optimal time intervals

All the numerical results presented are based on a real proto-
type of the 3 axes Cartesian robot available in the Mechatronics
Lab at University of Udine, Italy, depicted in Figure 1. The ex-
act values of the kinematics constraints are reported in Table 2.
Such robot is controlled by commercial PLC modules, as most
industrial robots, and is operated by feeding the control with a
sequence of position values for each individual joint.

In this section a comparison between the results obtainable
with several planning algorithms are reported, in order to pro-
vide a comparison of the performance of the novel approaches
proposed in this paper. The first test is run choosing a pick &
place task specified by 8 via-points. Figures 2–5 show the evo-
lution of position, velocity and acceleration for the Y axisof the
robot. The results for the X and Z axis are not shown, due to the
limited space of the paper. A comparison is established compar-

TABLE 2 . KINEMATIC CONSTRAINTS

Min value Max value

Velocity -225mm/s 225mm/s

Acceleration -2400mm/s2 2400mm/s2

Jerk -2400mm/s3 2400mm/s3

ing the ”545” and ”5455” with the ”434” and ”445” algorithms
with minimum time, with bounded speed, acceleration and jerk.
As it can be seen in Figure 5, continuous jerk cannot be obtained
by the ”434”, while the other methods achieve this goal. Null
jerk value can be obtained at the initial point by the ”545” and
the ”5455”, and the latter shows also a zero final jerk value. The
price to be paid for the superior level of smoothness is clearly
a longer total execution time. The beneficial effects on smooth-
ness provided by the ”5455” trajectory is clearly shown in figure
5: the ”5455” has the lowest overall peak jerk, which is equal
to 1932mm/s3, while the peak value of jerk for the ”445” and
”545” methods is limited to 2500mm/s3, as such value is limited
by the jerk constraints imposed by the user.

In order to provide a more quantitative comparison between
the proposed methods and some other popular methods avail-
able in literature, the results of other several tests are reported in
Figure 6 and 7. The set of via points taken into consideration
for each individual tests are are disposed along the vertexes of
a triangle, of a square and along a circle in the operative space.
Results are provided in terms of total execution time and integral
of the quadratic norm of the jerk, which is a good indicator ofthe
smoothness of the whole trajectory, since it takes into account the
jerk values along the whole trajectory, not just the peak values.
The BSPL5J and SPL3J methods, developed in [8], are included
as well.

The comparison shows that within similar execution time,
the ”5455” trajectory shows an overall integral of jerk value
which is outperformed only by the BSPL5J method. Considering
the case of the square task, the ”5455” can achieves the lowest
overall value of the integral of jerk, but with the longest execu-
tion time. The ”545” trajectory shows a performance level which
appears to be a good compromise between the speed of execution
of the task of the ”445” and the smoothness of the ”5455”.

CONCLUSION
In this paper two new trajectory planning algorithms have

been presented. The first one, named ”545” allows to interpolate
a set ofN via-points obtaining the continuity of jerk along the
whole path. Moreover, the value of jerk at the initial point can be
arbitrarily imposed. The other novel trajectory introduced in this

7 Copyright c© 2012 by ASME
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paper is the ”5455”, which ensures the continuity of jerk while
allowing the user to decide the value of jerk at both the first and
last via-point. This feature can be efficiently used to plan trajec-
tories with repeated cycles retaining the continuity of jerk along
the whole task, with initial and final null jerk. Such character-
istics cannot be obtained neither with the ”445”, nor with the
”545” method. Comparison with other trajectory planning algo-
rithms prove that the proposed approaches can achieve a good
compromise between the level of smoothness and the total exe-
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cution time, when minimal time trajectories with bounded speed,
acceleration and jerk are taken into account.
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Appendix A: Matrix M for the ”545” and ”5455” trajectories
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