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ABSTRACT

Planning smooth trajectories is crucial in the most advahce
robotic applications in industrial environments. In thiager two
novel trajectory planning methods for robotic manipulat@re
introduced, named "545” and "5455”. Both methods are based
on an interpolation of a sequence of via points using a combi-
nation of 4" and 5" order polynomial functions. These tech-
niques allow to obtain a continuous-jerk trajectory for iroped
smoothness and minimum excitation of vibration. By usieg th
"545" method, null jerk at initial time can be achieved, wéil
with the "5455” method one can impose an arbitrary value of
jerk at both the first and the last via-point. The outcome dahbo
methods is the optimal time distribution of the via pointghw
respect to a predefined objective function. Results areigeoV
for a 3 d.o.f. Cartesian manipulator, but the techniques tbay
applied to any industrial robot.

INTRODUCTION

The development of trajectory planning algorithms for in-
dustrial manipulator is a fundamental topic in roboticsieagr-
ing. Severe vibrations arise in manipulators when they aneaith
along a non-smooth trajectory. In that case worsening of ac-
curacy, premature joint wear and mechanical failures might
cur. Therefore in the last decades a large number of techsiqu
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have been developed to design smooth trajectories for inaus
robots [1]. Both online and off-line techniques have beeretie
oped: this work falls into the latter category. Another fanten-

tal distinction between the several methods availablgéndture

is the use of a model-based or of a model-free approach. Whil
model-based approaches can achieve good results in a speci
case [2], they lack the generality which is a fundamentalireg
ment for most industrial application. The development ofan
curate dynamic models of a robotic manipulator is a raretjpeac

in most industrial facilities, due to the low level of penged po-
tential economic advantage and the general lack of the nedjui
know-how. Therefore model-free approaches, as the one pre
sented in this paper, are much more appealing for today’kehar

In this paper two novel trajectory planning algorithms for i
dustrial robot are presented. Such algorithms produce tamalp
trajectory starting from a set of via-points, i.e. they atjhe dis-
tance between two consecutive via points in order to mirénaiz
cost function of choice. Constraints on velocity, accelersand
jerk at each joint can be specified as inputs of the optimonati
procedure. Similar approaches can be encountered quite ioft
literature, since many methods are available to producma ti
law which interpolates or approximate a set of via-pointsede
works can be classified on the base of different featured) suc
as the choice of the cost function and of the primitive furrcsi
used for the interpolation procedure. The paper [3] intoasu
a method for the evaluation of minimum jerk trajectories as &
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global constrained minimax optimization problem. The tinte
polation is based on a sequence of cubic polynomial funstion
Continuous jerk can be achieved by this method, which on the
other hand has high computational demands. Literatureasn tr
jectory planning has in many cases highlighted the worgpoim
motion accuracy and the increased level of vibration on titk e
effector caused by high level of acceleration and jerk (tle
time derivative of acceleration), as in [4,5]. In partiqulzefran

et. al. in [6] shows that smooth trajectories (i.e. trajée®
without jerk discontinuities) are to be preferred to comypith

the physical limitation of the actuators and with the linofghe
control system bandwidth, and that non-smooth motion can ex
cite the structural natural frequencies of the system. Asibbes
solution to the problem of jerk continuity has been solvedtzy
use of fifth order B-spline together with a composite timexje
cost function are used in [7,8]. Other popular techniques ar
based on simpler interpolation functions, such as the "38”
proach developed by Ho and Cook in [9]. Such method relies on
the use of spline functions, but does not guarantee theraenti
ity of jerk along the trajectory. Such problem has been sblve
by Petrinec and Kovacic in [10], trough the development ef th
"445” trajectory. Such approach makes use of an interpmiati
function composed by a sequence Bfdrder polynomial func-
tions, with a 8" order function for interpolating the motion be-
tween the last two via-points. The use of polynomial funtsiof
even high order allows to produce motion profiles with sugeri
smoothness, but at the cost of a general increase of peadsvalu
of speed and acceleration, if a constant total executior tén
considered. An example of the use of polynomials functigms u
to the 9" order can be found in [11].

The two innovative methods presented here are based on

two new composite trajectory primitives. The first one, ndme
"545”, uses a ¥ order polynomial function as the primitive for
the first and the last segment of the trajectory, while intatiate
segments are described bY 4rder polynomial functions. This
choice, together with a suitable choice of the continuitydio
tions at each via-point, ensures that:

1. jerk is continuous along the whole trajectory
2. an arbitrary jerk value can be specified for the first pofnt o
the trajectory

While the first feature is shared with other algorithms, such
as the ones that are based on cubic splines [12], many ap@®ac
do not allow for the operator to choose all the kinematic para
eters for the first and the last point of the trajectories. tAgill
be shown in the paper, this feature allows to produce traijiest
with null acceleration and jerk at the extreme point of tlzgetr-
tory. The resulting motion profile is therefore smootheiit sall
induce a reduced level of vibration to the robot structurée T
second algorithm proposed in this paper is a modified version
of "5645”, named "5455”, which allows to impose an arbitrary
value of the jerk, as well as acceleration and velocity, &t iioe

first and the last via point. This feature can be efficientlgdi®
maximize the smoothness of the motion profile during the-crit
cal phase of start-up and resting of the robot. Moreoverrise f
choice of initial and final jerk allows to retain maximum snttvo
ness even in the case of the cyclical repetition of the sasie ta
which is case often encountered in industrial applicatidmare-
over, the two novel methods proposed here are of straigtwiak
implementation. As it will be shown in the paper, the compu-
tation of the trajectory requires to find the optimal set afdi
intervals between two consecutive via points. This is a lgrob
that can be solved quite easily and in a relatively short taye
using standard optimization routines, such as Matl&b&con
The aforementioned optimization problem is constrainetljte
solution is generally not critical, since all the consttaioan be
expressed as an explicit function of the optimization \(a@&ai.e.
the set of time intervals between two via-points.

The evaluation of the effectiveness of the proposed trajec
tories is conducted by means of extensive experimentaltsesu
A three degrees-of-freedom Cartesian manipulator is ¢chfme
testing the novel approach proposed here. Numerical eséden
confirm that the proposed method achieves a good level of pe
formance when compared to other popular trajectory plannin
algorithms [3,7,10,13]. The cost function on which the oitia-
tion procedure is based is the well known minimum time, which
has proved to be a popular choice [14-16], given the appeal c
its potential economic advantage for most industrial aggpions.
Here only the case of minimum time with kinematic constisint
is considered, but the two novel "545” and "5455” primitivesn
be used as a starting point for other innovative methodsplgim
by changing the choice of the goal function.

1 THE 445", "545" and "5455" TRAJECTORIES

In order to give the clearest explanation possible of the in-
novative "545” trajectory, the "445” trajectory is introded first.
The description is made as brief as possible to meet the spa
constraints of a paper, for a more detailed descriptionsglesae
[10]. Let us consider a trajectory to be planned fridmaia points
P1 ... Ry in the joint space, supposed to be known trough the us
of a generic inverse kinematic algorithms from their eqigints
in the operative space.

The 445" trajectory

If the 445" trajectory is considered ™order polynomial
function are used to describe all the segments between ¢he v
points, with the exception of the last one, for which'& &rder
is used. Therefore the trajectory between the two adjadant v
pointsA 1 (1 <k < N—2) can be written as:

Fi(t) = Bi1 + By ot + By at? + By 4t + By st (1)
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in which F(t) represents the position of a joint of the robot
under consideration. The boundary conditions for the segme
under consideration can be expressed as:

F(0) =

Fk(Tk+1) NE]

w(0) = (2)
Vk(Tk+l) = Vk+1

a(0) =

in which v e v, 1 are the joint velocities andy, ax.1 are
the accelerations at the poirfds and R 1, respectively. Using
Egn. 1 in Eqgn. 2, one obtains:

F(0) =Bk = R
Vk(0) = By 2 = W
a(0) = 2By 3 = a
F(Tks1) = Bt +ByaTir1 +BiaTé g+
+ByaTS 1 +BisTé 1 = Pt
Vi(Tis1) = B2+ 2B 3Tt +3BkaT2q +4Bis T 1 = Vit
(3)
Eqgn. 3 can be expressed foxlk <N — 2 as:
ro1 0 0 0 0 7
Bxs 0 1 i) 0 0 A
Bk,2 0 E 0 0 Vi
Bks | = 4 3 1 4 1 |- &
Bra T3 T2, Ter T3, T2 Pera
+1
Bk-,5 3k+1 2k+1 k+1 i(+1 Vi1
L Tk4+1 Tk?frl 2Tk2+1 Tk4+1 Tk3+1 B (4)

The matrix equation above allows to evaluate the coeffi-

cients of the polynomial functions for the whole trajectomth
the exception of the last segment, which must take into adcou
also the constraint on the continuity of acceleration:

an-1(Tn) = an (5)

Such segment is defined as tHé &rder polynomial func-
tion:

Fn—1(t) = Bn_11+Bn_12t + Bn_1,3t%+

6
+Bn_14t3+By_15t* +By_16t° ©

Therefore the boundary conditions for the last segment o
the trajectory (Xt < Ty_1) are:

=Bn-11=F-1
BN-12=WN-1
=2Bn-13=an-1
Bn-11-+Bn-12Tn +Bn-13Tg+
+Bn_14TS +Bn_15T +Bn-16T = P

W_1(Tn) =Bn_12+2Bn_13Tn + 3B 14T+
+4BN_ 15Ty +5Bn_16Th = WN

~1(Tn) = 2BN_13+6Bn_14Tn + 12BN 15T+
+20By_16Ty = an

Fn-a(
N-1(0) =
(
(

<

72

(7)

an

All the constraints above can be described by a single matri
equation:

M1 0 0 0 0 0 T
0 1 0 0 0 0

Bn-— 1 _
sl |0 0 5 0 0 o
BN:l‘S 2w 6 3 10 4 1 aN:1
Bn.14| TS T3 2w TS TE 2Ty P
By 15 5 8 3 I 7 1 N
ol | % FRE| e

W e T T 21 ©

The velocitiesvy and accelerations, can be determined
using the conditions of continuity of acceleration and jatk
the via-points. Given the three via-poin, P, and F.»

(1 <k < N-—4), the acceleration at the end of the first segmen
is:

a(Tr1) = 2Bk 3+ 6B aTis 1 + 1284 sT2 4 9)

The value of jerk at the end of the first segment is:

Jk(Tks1) = 6By 4+ 24By 5Ty 1 (10)
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Similarly, the acceleration and the jerk at the beginning of
the second segment are:

a1(0) = 2Bk 113 (11)

ij(O) = 6Bk+1,4 (12)

The constraint on continuity of acceleration requires that

a(Tkr1) = a+1(0), thus obtaining:
6 6 12
—V —V 13
T k+ak+ T k1 — Q41 = Tk2+l (A1 —F) (13)

At the same way, continuity of jerk can be obtained using
Eqgn. 10 and 12, leading to:

30v+6ak+(18+18)v +6ak+
k k
Tk2+l Tyt Tk2+1 T2 o Tir2 2
= Vkt+2 = (H<+1 R) + (H<+2 —P1)
Tk+2 Tk+1 Tk+2
(14)
an—2(Tn—1) = an—1(0) (15)
iN—2(Tn=1) = jn-1(0) (16)

Substituting the right values in Egn. 15 and 16 leads to:

= (Fg1—

Tk+l

Ao (17)

v 3,1
g T et T e =

3
aN-1=

6) .3
-1 o

TN

aN 2+ (=—
TN 1

1
Pf\l—z)-i-TT\?(Pl\l—R\l— ﬂaN

(18)

4
(H\l 1— 1)—ﬁVN+
N

3
TN 1

The results in Egn. 13-18 can be merged in a single matri:
equation. A matrixM can be defined and used for evaluating
theN — 2 unknown velocities and — 2 accelerations at the via-
points, i.e. the matriP. H is the vector of time intervals between
two consecutive via points. MatriM, D andH have sizes2N —

4) x (2N —4), (2N —4) x 1 and(2N — 4) x 1, respectively.

MD = H (19)
v T C by ]
a ho
V3 hs
as .
D= H= (20)
VN-2
an-2
VN-1 hon—5
| an-1 | | hon-4 |
in which:
12 6
hy = T2 —(P—P)— szvlfal
30 6
= T*23(P2*P1) (P3 P) — -|T231
h2k—l:12(H(+l_H()a k*277N_3
hoy = 8T|<3+2(H<+1 ~R)+4T2 1 (A2~ Pg1), k=2,...,N-3
hon_5 = T—(PN 1—PR-2)
N 1
h (A1~ Pu-2) + o9 (A~ P 1)~ g+ o
2N74*T'3 . 1— 2 TN -1 TT\% N ﬂaN
(21)

The expression of matrik is not reported here, due to the
space constraints of the paper, but can be found in [10].

The novel "545” trajectory

The novel "545” trajectory introduced in this paper has beer
developed in order to solve the problem of the nonzero jerk a
the beginning of the trajectory. The ability to choose thie in
tial jerk allows us to obtain a trajectory which is smoothidgr
the critical phase of starting the motion of the robot fronestr
condition. In real application, this translates in a lowardl of
vibration, a more accurate reproduction of the planneéd¢tajy
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and a lower mechanical stress to the robot structure duhieg t
whole task, comparing to the results that can be achievdd wit
the "445" algorithm. On the other hand, numerical evidences
shows that for the same kinematic constraints, i.e. limityve-
locity, acceleration and jerk at the joints, a higher toteaition
time is obtained. will be shown in detail Bection X

In order to compute numerically a trajectory according to th
novel "545” algorithm and using the same notation of Eqn.19,
new expressions must be computed for matrideD andH.
The changes form the "445” algorithm are:

1. the interpolating function for the first segment of thgeita
tory is now a ' order polynomial function: the new coeffi-
cients are shown in Eqn.22.

2. the first two rows of matri®M and of the vectoH are dif-

segments of the trajectory. All the other segments are itbestr
by 4" order polynomial functions. In this way, it is possible to
achieve the following goals:

1. jerk is continuous for the whole trajectory
2. the value of jerk at the first and last via point can be imgdose

It should be pointed out that with the "445" trajectory the
jerk at the first and last via points cannot be imposed arflitra
On the other hand, the "545" trajectory only allows to choose
the value of the jerk only at the first via point. Therefore the
choice of a "5455” trajectory sports an extra degree of foeed

ferent: the new expressions are sown in Eqn. 23 and in Ap- in comparison to the "545”. When planning a "5455” trajectory

pendix A.

The new continuity conditions between the first and the sec-

ond segment of the trajectory can be expressed accordiing to t
following matrix equation:

1 0 0 0 0 0
B 0 1 0 0 0 0 b
1,1 1 1
B 0 0 S 0 0 0|y
Bis|_| o0 o o L o o &
B B 6 i
Bi’: 5 4 3 1 5 1 |J:;
’ T4 T3 212 3T, TA T3
Bie 42 32 1 2 1 24 l2 Vo
Ty T TP ey TR T
(22)

the user might choose to achieve a null jerk at the extresitie
the path (i.e. jo = 0 and jy = 0), or he can choose to impose
two arbitrary values foljp and jn. The first choice has more ap-
peal when maximum smoothness is the goal, while the secon
one can be efficiently exploited when the trajectory plagnim
cludes a composite trajectory. One example of a profitatdefis
nonzero initial and final jerk is the planning of trajectarigith
repetitive tasks. In this case, the user might want to plan th
whole trajectory in this way:

1. plan the trajectory for the first cycle wiflg = 0 andjy = j*
2. plan all the intermediate cycles wijh= jn = *
3. plan the last cycle witlip = j* andjy =0

In this way a complex trajectory with repetitive cycles can

The other continuity conditions are the same as the ones pre-pe planned obtaining zero initial and final jerk, and coritinu

viously shown for the "455” method. Using the notation intro
duced in Eqn.19, the new values for the first two rows of akay
are:

12 1.
—Vvi+3a1+=Toj1

hy ﬁ(Pl—PZ)-i- T 3 -
h L%()(P—Pz) %(Pz—P?,)-F%V +2—a +3j )
2 T23 1 T33 T22 1 T2 1 J1

The correct formulation for matribD is reported in Ap-
pendix A.

The "5455” trajectory

The novel "5455” trajectory is meant to be an improved ver-
sion of trajectory "545”. This primitive function is based the
use of 3" order polynomial functions for the first and the last two

5

of jerk can be achieved along the whole path as well. This goa
cannot be achieved neither with the "445”, nor with the "5455

trajectory.

The continuity conditions for the "5455” trajectory are the
same as the ones for the "545”, except for the last two segmen
of the trajectory. The new continuity conditions expresged
matrix form are:

1 0 0 0 0 0]
By ~
N-2.1 o 1 0 o0 o0 o0 PN-2
Br—22 o o LI o o o ||W2
2
Bv23| _|_10 6 _ 3 10 __ a4 _1 | |&-2
Bn-24 T8, TE. 2 T3, T, 2 Pn—1
B o [T S S T- R A
N-2,5 Tl\‘ll—l T!\?—l 2Tr\?71 Tr\il Tl\?—l Tl\%—l VN-1
Bn-26 3 1 e 3 1 an-1
TNfl TN*l 2TN—1 TN—l TNfl 2TN—1 - (24)
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1 0 0 0 0 0] The cost function of choice is the well known minimum
o 1 0o 0 O 0 time, i.e. the objective of the trajectory planning algomitis to
Bno11 210 4 10 6 3 1 Pn-1 generate the trajectory which has the minimum overall ei@cu
Bno12 'B\f LIN T§ N 2 6Tn VN-1 time, within the constraints mentioned above. Other ctwire
Bn-13 | _ 20 6 2014 4 1 || R possible too, such as minimum energy, minimum jerk, or mini-
Bn-14 TS T2 'Ig\? T2 Tn 2 WN mum time-jerk, as in [13].
Bno1s 15 _is 15 _% iz 1 an The optimization problem can be stated as:
Bn-16 T T3 TS TS 2T, 2T\ iN
4 1 4 3 Y1
Ty TS TG TR 6T | !
(25) min 3 h;
h =1
6 subject to:
hon-7 = TT(PN 2—P-3) 27)
N872 10 Viin < G (t) < Vimax J =1...N
hon-6= —5—(Pv-2—PN-3) + 53— (An-1—Pv-2) Amin < G (t) < Amax j=1...N
TN*Z TNfl JImin < qj(t) < JImax j=1...N
20 12 1
hon-s = — (Av—Pv-1) — —wn +3an — 5 Tnin 26
T LN 3 (26) with:
20 20 40 40
h AN = — y2— - — —= 11— —=
2N—4 Tl\:lgill:ﬁ\l 2 (T,\:fil T’\?)H\l 1 T,\?PN—'_
84 8 . h= [hy,h,... hy, 1] (28)
7\/ o + ) 3 ) p
+ 372 N TNaN IN
The above conditions can be used to compute the new cor-
rect formulation for matrixM, which is reported in Appendix TABLE 1. NOMENCLATURE FOR EQN.27
A.
Symbol  Definition
NUMERICAL RESULTS N Number of robot foint
The objective of the trajectory generation problem consid- umber ot robot joints
ered in this paper is to produce a trajectory in the joint spac Vp Number of via-points
given a set of via-points defined in the operative space. &he r L . .
h; Time interval between two via-points

sulting trajectory must respect some kinematic conssaind
be optimal in the sense of a given cost function. The kinetnati a;(t)
constraints are used to adapt the algorithm to the spechimtio
manipulator under consideration. This is a feature of patarh
importance in all industrial applications, where the daget val- qi(t)
ues of the manipulator must be carefully taken into accoont f

Velocity of thejth joint
d;(t) Acceleration of thegth joint
Jerk of thejth joint

many reasons, including safety. Here it has been chosert to se Vimin, Vimax - Velocity limits for thejth joint
hard constraints on the maximum and minimum values for the Amin, Amax  Acceleration limits for thgth joint
velocity, the acceleration and for the jerk at each joinshibuld - e

Jmin: Jmax ~ Jerk limits for thejth joint

be pointed out that a limit on the maximum value of the jerk can
also be used to control the smoothness of the trajectorgeSime

jerk limit can be chosen freely, trajectories with arbiilsahigh
smoothness can be achieved, at the cost of obtaining anrhighe
execution time. For the tests presented in the followingicec
symmetrical limits have been used. Moreover identical eslu
have been used for all the joints, but the algorithm develdpe

the Authors allows to use also limit values which are not sym-
metrical and not uniform for all the joints.

Once a set of via points in the operative space is defined, th
trajectory planning algorithm proposed in this paper foahe
sequence of steps:

1. the set of via-points in the joint space is automaticaéiy-g
erated, by means of a kinematic inversion routine

6 Copyright © 2012 by ASME



FIGURE 1. PROTOTYPE OF THE CARTESIAN ROBOT, MECHA-
TRONICS LAB, UNIVERSITY OF UDINE, ITALY

2. the speed, acceleration and jerk constraints accordittget
manipulator structural constraints and to the requireéllev
of smoothness are set by the used

3. an initial solution for the vector of time intervaltsis pro-
vided to the algorithm
4. the optimization problem defined in Eqn. 27 is solved by a

specific program. The outcast of the problem is the vettor
of optimal time intervals

All the numerical results presented are based on a realproto
type of the 3 axes Cartesian robot available in the Mechgfson
Lab at University of Udine, Italy, depicted in Figure 1. The e
act values of the kinematics constraints are reported itteTab
Such robot is controlled by commercial PLC modules, as most
industrial robots, and is operated by feeding the contrdh \ai
sequence of position values for each individual joint.

In this section a comparison between the results obtainable

with several planning algorithms are reported, in ordernm p

TABLE 2. KINEMATIC CONSTRAINTS

Min value Max value
-225mmy's 225mnys
-2400nnys?  2400mny’s?
-2400mnys®  2400mny's®

Velocity
Acceleration
Jerk

ing the "545” and "5455" with the "434” and "445" algorithms
with minimum time, with bounded speed, acceleration ankl jer
As it can be seen in Figure 5, continuous jerk cannot be obdain
by the "434”, while the other methods achieve this goal. Null
jerk value can be obtained at the initial point by the "5458an
the "5455”, and the latter shows also a zero final jerk vallee T
price to be paid for the superior level of smoothness is blear
a longer total execution time. The beneficial effects on gimoo
ness provided by the "5455" trajectory is clearly shown ifigy

5: the "5455” has the lowest overall peak jerk, which is equal
to 1932mnys?, while the peak value of jerk for the "445” and
"545” methods is limited to 250ny's®, as such value is limited
by the jerk constraints imposed by the user.

In order to provide a more quantitative comparison betweel
the proposed methods and some other popular methods ava
able in literature, the results of other several tests grerted in
Figure 6 and 7. The set of via points taken into consideratior
for each individual tests are are disposed along the vesteke
a triangle, of a square and along a circle in the operativeespa
Results are provided in terms of total execution time anegiral
of the quadratic norm of the jerk, which is a good indicatothef
smoothness of the whole trajectory, since it takes into actcihe
jerk values along the whole trajectory, not just the peakesl
The BSPL5J and SPL3J methods, developed in [8], are include
as well.

The comparison shows that within similar execution time,
the "5455” trajectory shows an overall integral of jerk \alu
which is outperformed only by the BSPL5J method. Considgrin
the case of the square task, the "5455” can achieves the lowe
overall value of the integral of jerk, but with the longeseex-
tion time. The "545" trajectory shows a performance leveiakh
appears to be a good compromise between the speed of execut
of the task of the "445” and the smoothness of the "5455".

vide a comparison of the performance of the novel approaches CONCLUSION

proposed in this paper. The first test is run choosing a pick &
place task specified by 8 via-points. Figures 2-5 show the evo
lution of position, velocity and acceleration for the Y arigthe
robot. The results for the X and Z axis are not shown, due to the
limited space of the paper. A comparison is established emmp

7

In this paper two new trajectory planning algorithms have
been presented. The first one, named "545” allows to intatpol
a set ofN via-points obtaining the continuity of jerk along the
whole path. Moreover, the value of jerk at the initial poiahde
arbitrarily imposed. The other novel trajectory introdd@e this
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FIGURE 2. COMPARISON BETWEEN 434, 445, 454 AND 5455
ALGORITMS FOR A PICK & PLACE TRAJECTORY TRAJECTO-
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FIGURE 3. COMPARISON BETWEEN 434, 445, 454 AND 5455
ALGORITMS FOR A PICK & PLACE TRAJECTORY TRAJECTO-
RIES: SPEED OF Y AXIS

paper is the "5455”, which ensures the continuity of jerk lehi
allowing the user to decide the value of jerk at both the finst a
last via-point. This feature can be efficiently used to plajet-
tories with repeated cycles retaining the continuity ok jelong
the whole task, with initial and final null jerk. Such chaezet
istics cannot be obtained neither with the "445”, nor witle th
"545” method. Comparison with other trajectory planningal

rithms prove that the proposed approaches can achieve a good
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FIGURE 4. COMPARISON BETWEEN 434, 445, 454 AND 5455
ALGORITMS FOR A PICK & PLACE TRAJECTORY TRAJECTO-
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FIGURE 5. COMPARISON BETWEEN 434, 445, 454 AND 5455
ALGORITMS FOR A PICK & PLACE TRAJECTORY TRAJECTO-
RIES: JERK ALONG Y AXIS

cution time, when minimal time trajectories with boundedes,
acceleration and jerk are taken into account.
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Appendix A: Matrix M for the "545” and "5455” trajectories

_ 8 ;
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- 8 -
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S5TaTP TETR SLTR+3T3T 512 TiTa 0 0
0 0
Ms455=
0 6TN_3 T 4 6Tn_3 K 0 0 0 0
0 S5MWn-3Tg 5, T3 5To 5 3TheaTS L +3T3 T2 TS 5TE 5 TS 5Th-2 0 0 0
3 1 3 1
° ° T S R °
0 0 5 1 3 6 3 4 1
T2 T™Ne T2, T2, 2na T2, 2Ty 1
8
0 0 0 0 0 0 T 1
8 1 12 12 3
0 0 0 0 —_— =
L Tﬁ71 Tn-1 Tﬁ71 T Tno1
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