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ABSTRACT
Planning smooth trajectories is a crucial task for most ad-

vanced robotic applications. Poorly planned trajectoriescan be
inefficient under many aspects, since they might require long exe-
cution time and induce unnecessary vibration on the end-effector
of the robot as well as high solicitation on its mechanical struc-
ture and actuators. In this paper a novel trajectory planning
methods for robotic manipulators is introduced, named ”5455”.
This method is based on an interpolation of a sequence of via
points using a combination of4th and5th order polynomial func-
tions. This technique allows to obtain a continuous-jerk trajec-
tory for improved smoothness and minimum excitation of vibra-
tion. Such method allows also to impose an arbitrary value of
jerk at the first and last via-point. This feature can be effectively
used to produce a smooth trajectory for repetitive tasks, trough
an innovative optimization algorithm which is introduced in this
paper. Both numerical and experimental results are provided for
a 3 d.o.f. Cartesian robot, but the techniques provided herecan
be applied to any industrial manipulator.

INTRODUCTION
The ever growing market of industrial robot applications re-

quires the development of high performance trajectory planning
algorithms. Severe vibrations arise in manipulators when they

∗Address all correspondence to this author.

are moved along a non-smooth trajectory. In that case prema-
ture joint wear and mechanical failures might occur, as wellas
a major worsening of the motion accuracy. Therefore in the last
decades a large number of techniques have been developed to de-
sign smooth trajectories for industrial robots. An extended view
of the problem can be found in the book [1]. Both online and off-
line techniques have been developed: this work falls into the lat-
ter category. Another fundamental distinction between thesev-
eral methods available in literature is the use of a model-based
or of a model-free approach. While model-based approaches can
achieve good results in a specific case [2], they lack the gen-
erality which is a fundamental requirement for most industrial
application. As a matter of fact most industrial facilitiesdoes
not have the knowledge required to work with model-based ap-
proaches, and the investment on personnel training is not reputed
to be profitable. Therefore model-free approaches, as the one
presented in this paper, are much more appealing for today’smar-
ket.

In this paper a novel trajectory planning algorithm for in-
dustrial robot is presented. This algorithm produces an optimal
trajectory starting from the definition of a set of via-points, i.e.
it adjusts the time distance between two consecutive via points
in order to minimize a cost function of choice. Constraints on
velocity, acceleration and jerk at each joint can be specified as
inputs of the optimization procedure. Similar approaches can
be encountered quite often in literature, since many methods are

1 Copyright c© 2012 by ASME



available to produce a time law which interpolates or approxi-
mates a set of via-points. These works can be classified on the
base of different features, such as the choice of the cost function
and of the primitive functions used for the interpolation proce-
dure. The paper [3] introduces a method for the evaluation of
minimum jerk trajectories as a global constrained minimax opti-
mization problem. The interpolation is based on a sequence of
cubic polynomial functions. Continuous jerk can be achieved by
this method, but this procedure has very high computationalde-
mands. Fifth order B-spline together with a composite time-jerk
cost function are used in [4, 5]. Other popular techniques are
based on simpler interpolation functions, such as the ”343”ap-
proach developed by Ho and Cook in [6]. This method relies on
the use of spline functions, but does not guarantee the continuity
of jerk along the trajectory. The problem of continuity of jerk
has been solved by Petrinec and Kovacic in [7], trough the devel-
opment of the ”445” trajectory. Such approach makes use of an
interpolation function composed by a sequence of 4th order poly-
nomial functions, with a 5th order function for interpolating the
motion between the last two via-points. The use of polynomial
functions of even high order allows to produce motion profiles
with superior smoothness, but at the cost of a general increase of
peak values of peak speed, if a constant total execution timeis
considered. An example of the use of polynomials functions up
to the 9th order can be found in [8].

Several papers are focused on keeping the value of jerk lim-
ited and possibly continuous, since jerk heavily affects the accu-
racy of motion and the solicitation to the mechanical structure of
the robot. Moreover, smooth trajectories are to be preferred in or-
der to comply with the bandwidth limitation of the actuators. The
correlation between trajectory smoothness and the performance
of a robotic system has been demonstrated both theoretically [9]
and experimentally [10] in several papers.

The novel method presented here is based on a new com-
posite trajectory primitive, called ”5455”. It uses a 5th order
polynomial function as the primitive for the first and the last two
segments of the trajectory, while the intermediate segments are
described by 4th order polynomial functions. This choice, to-
gether with a suitable choice of the continuity conditions at each
via-point, ensures that:

1. jerk is continuous along the whole trajectory
2. an arbitrary jerk value can be specified for the first and the

last via-point

While the first feature is shared with other algorithms, such
as the ones that are based on cubic splines [11, 12], many ap-
proaches do not allow for the operator to choose all the kinematic
parameters for the first and the last point of the trajectories. As it
will be shown in the paper, this feature allows to produce trajec-
tories with null acceleration and jerk at the extreme point of the
trajectory, a feature that is reputed to be very important interms

of vibration reduction, as highlighted by Boryga et al. in [8].
This feature can be efficiently used to maximize the smoothness
of the motion profile during the critical phase of start-up and rest-
ing of the robot. Moreover the free choice of initial and finaljerk
allows to retain maximum smoothness even in the case of the
cyclical repetition of the same task.

The evaluation of the effectiveness of the proposed trajec-
tory is conducted by means of extensive experimental tests.A
three degrees-of-freedom Cartesian manipulator is chosenfor
testing the novel approach proposed here. Numerical evidences
confirm that the proposed approach achieves a good level of per-
formance when compared to other popular trajectory planning
algorithms [3,4,7,13]. The cost function on which the optimiza-
tion procedure is based is the well known minimum time, which
has proved to be a popular approach [14–16], given the appeal
of its potential economic advantage for most industrial applica-
tions. Here only the case of minimum time with kinematic con-
straints is considered, but the ”5455” primitive can be usedas a
starting point for other innovative methods, simply by changing
the choice of the goal function. The optimization problem can
be solved easily and with limited computational effort withsev-
eral optimization routines, such as Matlab’sfmincon. Constraints
can be handled with ease, since the kinematics limits can be ex-
pressed as an explicit function of the time intervals between two
consecutive via points.

1 THE ”5455” TRAJECTORY
In this section the novel ”5455” trajectory planning algo-

rithm will be introduced. Another new algorithm, named ”545”
will be introduced as well. These two methods are based on a
different sequence of polynomial functions. Both algorithms al-
low for the use of hard constraints on velocity, acceleration and
jerk of each joint of the robot independently, thus allowingtheir
use for virtually every industrial robot.

The ”545” trajectory
The ”545” trajectory planning method make use of a se-

quence of 4th order polynomial function for interpolating the tra-
jectory between the second and the next-to-last via point. The
remaining first and last segment of the trajectory is interpolated
using 5th order polynomial function.

Let us indicate withPk, vk, ak and jk the position, velocity,
acceleration and jerk at thek -th via-point, respectively. The first
segment of the trajectory is, according to the proposed method,
interpolated trough a polynomial of degree 5, as in:

Fk(t) = Bk,1+Bk,2t +Bk,3t
2+Bk,4t

3+Bk,5t
4+Bk,6t

5 (1)

The symbolFk(t) represents the position of thk -th joint of
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the robot as a function of time. The boundary conditions imposed
on the trajectory along the first segment are:

Fk(0) = P1

vk(0) = v1

ak(0) = a1

jk(0) = j1
Fk(T2) = P2

vk(T2) = v2

(2)

It should be noticed that the current choice of boundary con-
ditions allows to choose the value of the jerk at the startingpoint
of the trajectory,j1. This feature is generally used to plan trajec-
tories with initial null jerk. Substituting Eq. 2 into Eq. 1 allows
to evaluate theB1,k coefficients as:

Fk(0) = Bk,1 = P1

vk(0) = Bk,2 = v1

ak(0) = 2Bk,3 = a1

jk(0) = 6Bk,4 = j1

Fk(T2) = Bk,1+Bk,2Tk+1+Bk,3T2
k+1++Bk,4T3

k+1+Bk,5T4
k+1 = P2

vk(T2) = Bk,2+2Bk,3Tk+1+3Bk,4T2
k+1+4Bk,5T3

k+1 = v2

(3)

The 6 equations in Eq. 12 can be merged in single matrix ex-
pression which shows the explicit expression of the polynomial
coefficientsB1,1, B1,2 . . .B1,6:

















B1,1

B1,2
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


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


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


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























1 0 0 0 0 0
0 1 0 0 0 0

0 0
1
2

0 0 0

0 0 0
1
6

0 0

−
5

T4
2

−
4

T3
2

−
3

2T2
2

−
1

3T2

5

T4
2

−
1

T3
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1
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1
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T4
2































·

















P1

v1
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j1
P2

v2

















(4)
The intermediate segments of the trajectory are interpolated

using the fourth order polynomial function:

Fk(t) = Bk,1+Bk,2t +Bk,3t
2+Bk,4t

3+Bk,5t
4 (5)

which is valid for 2≤ k≤ N−2, beingN the number of via-
points. Since we are dealing with a four order polynomial, we
need to impose 5 boundary conditions:

Fk(0) = Pk

vk(0) = vk

ak(0) = ak

Fk(Tk+1) = Pk+1

vk(Tk+1) = vk+1

(6)

Substituting the boundary conditions into Eq. 5 one obtains:

Fk(0) = Bk,1 = Pk

vk(0) = Bk,2 = vk

ak(0) = 2Bk,3 = ak

Fk(Tk+1) = Bk,1+Bk,2Tk+1+Bk,3T2
k+1+Bk,4T3

k+1+Bk,5T4
k+1 = Pk+1

vk(Tk+1) = Bk,2+2Bk,3Tk+1+3Bk,4T2
k+1+4Bk,5T3

k+1 = vk+1

(7)

The expression above can be written in matrix form, show-
ing the explicit values of theB coefficients:
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

(8)
The trajectory between the last and the next-to-last via-point

is again represented by a polynomial of order 5. Therefore we
need to add one condition to the one presented in Eq. 6. The
resulting boundary conditions are:

FN−1(0) = BN−1,1 = PN−1

vN−1(0) = BN−1,2 = vN−1

aN−1(0) = 2BN−1,3 = aN−1

FN−1(TN) = PN

vN−1(TN) = vN

aN−1(TN) = aN

(9)
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Notice that in this case we cannot impose an arbitrary value
on the jN, i.e. the jerk at the last via-point. Using the same proce-
dure applied before, we use the polynomial form for expressing
the positions, the velocities and the accelerations in Eq. 9:

FN−1(0) = BN−1,1 = PN−1

vN−1(0) = BN−1,2 = vN−1

aN−1(0) = 2BN−1,3 = aN−1

FN−1(TN) = BN−1,1+BN−1,2TN +BN−1,3T2
N +BN−1,4T3

N

+BN−1,5T4
N +BN−1,6T5

N = PN

vN−1(TN) = BN−1,2+2BN−1,3TN +3BN−1,4T2
N +4BN−1,5T3

N

+5BN−1,6T4
N = vN

aN−1(TN) = 2BN−1,3+6BN−1,4TN +12BN−1,5T2
N

+20BN−1,6T3
N = aN

(10)

Again, the matrix form of the equation above is:
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(11)
The equations above, specifically Eq. 7,8,11, are not suffi-

cient to evaluate all the kinematic parameters at every via-point.
Acceleration and jerk at the second via-point can be evaluated
trough the 2nd and 3rd time derivative of Eq. 1:

a2 = 2B1,3+6B1,4T2+12B1,5T2
2 +20B1,6T3

2

j2 = 6B1,4+24B1,5T2+60B1,6T2
2

(12)

The velocities and the accelerations at the other via-point
can be evaluated using the continuity conditions of acceleration
and jerk. If the three consecutive via-pointsPk, Pk+1 andPk+2 are
considered, the acceleration at end of the first segment is:

ak(Tk+1) = 2Bk,3+6Bk,4Tk+1+12Bk,5T2
k+1 (13)

while the jerk at the same point is:

jk(Tk+1) = 6Bk,4+24Bk,5Tk+1 (14)

Acceleration and jerk at the beginning of the second segment
are:

ak+1(0) = 2Bk+1,3 (15)

jk+1(0) = 6Bk+1,4 (16)

Continuity of acceleration and jerk impose that Eq. 13 must
be equal to Eq. 14, and that Eq. 15 must be equal to Eq. 16.
Thus we obtain, respectively:

6
Tk+1

vk+ak+
6

Tk+1
vk+1−ak+1 =

12

T2
k+1

(Pk+1−Pk) (17)

30

T2
k+1

vk+
6

Tk+1
ak+(

18

T2
k+1

+
18

T2
k+2

)vk+1+
6

Tk+2
ak+2+

6

T2
k+2

vk+2

(18)

=
48

T3
k+1

(Pk+1−Pk)+
24

T3
k+2

(Pk+2−Pk+1)

Continuity of acceleration and jerk for the last two segments
can be expressed as:

aN−2(TN−1) = aN−1(0) (19)

jN−2(TN−1) = jN−1(0) (20)

Using the right values into Eq. 19 and 20 we obtain:

3
Tk+1

vk+
1
2

ak+
3

Tk+1
vk+1−

1
2

ak+1 =
6

T2
k+1

(Pk+1−Pk) (21)
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5

T2
N−1

vN−2+
1

TN−1
aN−2+(

3

T2
N−1

+
6

T2
N

)vN−1+
3

2TN
aN−1 =

(22)

=
8

T3
N−1

(PN−1−PN−2)+
10

T3
N

(PN −PN−1)−
4

T2
N

vN +
1

2TN
aN

The results provided above can be used to determine a sin-
gle matrix expression which allows to evaluate all the kinematic
variables that are not imposed with the definition of the trajec-
tory planning problem. We can define the matrixM , a vector of
unknown velocities and accelerationsD, whose length isN−2,
and a vector of coefficientsH. M is defined so that the following
relationship holds:

M ·D = H (23)

Matrix M has size(2N− 4)× (2N− 4). The expressions
of D andH are reported below. The expression of matrixM is
reported in Appendix A.

D =
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
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
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
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(24)

in which:

h1 =
20

T2
2

(P1−P2)+
12
T2

v1+3a1+
1
3

T2 j1

h2 =
48

T3
2

(P2−P1)+
24

T3
3

(P3−P2)−
30

T2
2

v1−
6
T2

a1

h2k−1 = 12(Pk+1−Pk), k= 2, . . . ,N−3

h2k = 8T3
K+2(Pk+1−Pk)+4T3

K+1(Pk+2−Pk+1), k= 2, . . . ,N−3

h2N−5 =
6

T2
N−1

(PN−1−PN−2)

h2N−4 =
8

T3
N−1

(PN−1−PN−2)+
10

T3
N

(PN −PN−1)−
4

T2
N

vN +
1

2TN
aN

(25)

The ”5455” trajectory
The novel ”5455” trajectory can be thought as an improved

version of trajectory ”545”. This primitive function is based on
the use of 5th order polynomial functions for the first and the
last two segments of the trajectory. All the other segments are
described by 4th order polynomial functions. In this way, it is
possible to achieve the following goals:

1. jerk is continuous for the whole trajectory
2. the value of jerk at the first and last via point can be imposed

It should be pointed out that the ”545” trajectory only allows
to choose the value of the jerk only at the first via point. There-
fore the choice of a ”5455” trajectory sports an extra degreeof
freedom, in comparison to the ”545”. When planning a ”5455”
trajectory, the user might choose to achieve a null jerk at the ex-
tremities of the path (i.e.j0 = 0 and jN = 0), or he can choose
to impose two arbitrary values forj0 and jN. The first choice has
more appeal when maximum smoothness is the goal, while the
second one can be efficiently exploited when the trajectory plan-
ning includes a composite trajectory. One example of a profitable
use of nonzero initial and final jerk is the planning of trajectories
with repetitive tasks. This case will be dealt with at the endof
this section.

The formulation of the ”5455” is the same as the one devel-
oped for the ”545”, with the exception of the boundary condi-
tions for the two last segment of the trajectory. The 6 boundary
conditions for the next-to-last segment are:

FN−2(0) = PN−2

vN−2(0) = vN−2

aN−2(0) = aN−2

FN−2(TN−1) = PN−1

vN−2(TN−1) = vN−1

aN−2(TN−1) = aN−1

(26)

which can be translated into the following matrix expres-
sion, after the expression of the 5th order interpolating function
is used:
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
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




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


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














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0 0 1
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N−1
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− 3

2TN−1
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T3

N−1
− 4

T2
N−1

1
2TN−1

15
T4

N−1

8
T3

N−1

3
2T2
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7
T3
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T2
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T5
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− 3
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− 1
2T3
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6
T5
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1
2T3
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



















·

















PN−2
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















(27)
Boundary conditions for the last segment of the trajectory

are:
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FN−1(0) = PN−1

vN−1(0) = vN−1

FN−1(TN) = PN

vN−1(TN) = vN

aN−1(TN) = aN

jN−1(TN) = jN

(28)

Notice that here, unlike the ”545”, we can impose the jerk
even at the last via-point, i.e.jN. This is possible because the use
of 5th order polynomial function for a single segment instead of a
4th order, as in the ”545”, allows to use one more degree of free-
dom on the choice of the boundary conditions. Using the same
procedure as before, boundary conditions for the last segment
can be condensed in a single equation:
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(29)
The new formulations of matricesD andH are the same as

in Eq. 24, with the exception of 4 elements of matrixH:
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(30)

The above conditions can be used to compute the new cor-
rect formulation for matrixM , which is reported in Appendix
A.

Trajectory planning for repetitive tasks
As stated before, the proposed ”5455” method allows to im-

pose the value of jerk at the initial and final point of the trajectory.
We here exploit this feature to efficiently plan trajectories which
include repetitive tasks. Let us take into consideration a task
which includes: 1) an initial (or ”speed-up”) phase 2) a repetitive
task which is to be repeatedM time 3) a final (or ”slow-down”)
phase. Each phase is described by a set of via-points, with the last
via-point of phase 1 equal to the first via-point of phase 2. The
same applies for the last point of phase 2 and the first of phase3.
If the number of cyclesM is large (10 or even more), the numeri-
cal solution of the optimization algorithms can be jeopardized or,
in the best option, it can be dramatically slowed down. A pos-
sible solution is to adopt the following strategy, which sports a
lower computational burden: we can split the problem into three
parts, to be solved in the specified order:

1. determine through an optimization problem the optimal
values of the time intervals between each two consecu-
tive via-points belonging to the cycle to be repeated, i.e.
[Tk,1,Tk,2, . . . ,Tk,N], and of the initial and final conditions
[ICk = FCk]

2. determine the optimal trajectory for the phase 1, with zero
initial conditions (on velocity, acceleration and jerk), and
with final conditions equal to the initial conditions evaluated
at the previous step, i.e.ICk

3. determine the optimal trajectory for the phase 3, with zero
final conditions (on velocity, acceleration and jerk), and with
initial conditions equal to the final conditions evaluated at
the first step, i.e.FCk

In this way we have a procedure that guarantees the continu-
ity of jerk for all the duration of the task, and that starts and ends
with null jerk for minimum induced vibrations.

Experimental results: comparison with other methods
In this section the effectiveness of two novel trajectory plan-

ning algorithm is evaluated trough experimental comparison with
other common methods available in literature. For all the test
cases, minimum time trajectory with bounded speed, accelera-
tion and jerk are taken into consideration. Results are obtained
using a 3 d.o.f. Cartesian manipulator, which uses commonly
available drive units. A picture of the robot is available inFig. 1.
Therefore it replicates the structure and the hardware of com-
monly available industrial robots. The kinematic constraints
have been chosen as in Table 1, according to the datasheet values
of the robot prototype. The maximum value of jerk is an arbi-
trary value, since this data is not available from any datasheet.
Generally this limit can be used to control the smoothness ofthe
trajectory.
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TABLE 1 . KINEMATIC CONSTRAINTS

Min value Max value

Velocity -225mm/s 225mm/s

Acceleration -2400mm/s2 2400mm/s2

Jerk -2400mm/s3 2400mm/s3

FIGURE 1. THE CARTESIAN MANIPULATOR USED FOR EX-
PERIMENTAL TESTS

Pick & place trajectory
This tests is aimed at evaluating the accelerations along the

Z axis on the end effector on the manipulator for a pick & place
trajectory. Results are provided for several planning algorithms,
such as the SPL3J [5], the ”434” [6], ”445” [7], ”5455” and
BSPL5J [5]. Simulated accelerations are shown in Fig. 2. The
trajectory is specified as a sequence of 8 via-points. As it can
be seen in Fig. 2, the SPL3J methods produces an interpolation
which is quite prone to induce vibrations on the end effector,
since there are 10 points with discontinuous jerk. The applica-
tion of the ”434” and the ”445” algorithms results in trajectories
with 8 and 2 jerk discontinuities, respectively. Null initial and
final jerk can be obtained only by the ”5455” and the BSPL5J
methods. In the case under consideration, it can be seen thatthe
SPL3J, the ”434” and the ”445” methods produce similar results,
since there is a small variation among them in terms of total ex-
ecution time, and in the magnitude of the peak acceleration.As
it can be seen in Fig. 3, and as expected from theoretical results,

TABLE 2 . EXPERIMENTAL TESTS: PICK & PLACE TRAJECTO-
RIES

SPL3J 434 455 5455 BSPL5J

execution time[s] 4.838 5.002 4.888 5.671 5.660

RMS acc.[m/s2] 0.2229 0.2026 0.2052 0.1520 0.1569
∫

acc2 [m2/s3] 0.4146 0.3974 0.3912 0.2595 0.2564

the ”455” methods can produce the lowest amount of accelera-
tion among the three algorithms considered above. The trajec-
tories planned with ”5455” and BSPL5J methods have virtually
the same execution time, while the peak value of the simulated
acceleration (see Fig. 2) for the BSPL5J is the lowest among the
5 methods. On the other hand, the experimental results shows
that the measured acceleration on the end effector of the robot
for the case of the ”5455” is not worse than the one obtained
with the BSPL5J method. The exact values of total execution
time, of root mean square (RMS) acceleration and of the time
integral of squared acceleration measured on the end-effector are
reported in Table 2 to provide a more accurate evaluation of the
experimental evidences.
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FIGURE 2. COMPUTED ACCELERATIONS ALONG THE Z
AXIS FOR THE PICK & PLACE TRAJECTORY

Circular trajectory
This tests involves planning a trajectory by interpolatinga

sequence of 7 via points located on a circle which lies on a plane
that is not parallel to theXY plane. In this way all the three axes
of the robot are moved at the same time. Figure 4 shows the
planned accelerations for the Z axis of the robot. The analysis
of the figure shows that all the methods under consideration pro-
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FIGURE 3. MEASURED ACCELERATIONS ALONG THE Z
AXIS FOR THE PICK & PLACE TRAJECTORY

duce different total execution time. The fastest trajectory is, as
expected, the SPL3J, while the slowest is the ”5455”. For theex-
act values, refer to Table 3. From the data available in Fig. 5and
Table 3, it can be seen that the BSPL5J produces the trajectory
with the lowest time integral of the squared acceleration onthe
end-effector, while the ”5455” achieves the lowest value ofRMS
acceleration. Therefore we can evaluate that the level of perfor-
mance in terms of vibration for the ”5455” and the BSPL5J are
basically the same.

0 1 2 3 4 5 6
−500

0

500

time  [s]

ac
ce

le
ra

tio
n 

 [m
m

/s
2 ]

 

 

SPL3J
434
445
5455
BSPL5J

FIGURE 4. COMPUTED ACCELERATIONS ALONG THE Z
AXIS FOR THE CIRCULAR TRAJECTORY

TABLE 3 . EXPERIMENTAL TESTS: CIRCULAR TRAJECTO-
RIES

SPL3J 434 455 5455 BSPL5J

execution time[s] 4.255 4.718 4.844 5.4190 5.095

RMS acc.[m/s2] 0.2424 0.2218 0.1999 0.1870 0.1942
∫

acc2 [m2/s3] 0.5022 0.439 0.3708 0.3610 0.3455

CONCLUSION
In this paper a new trajectory planning algorithm has been

presented. It allows to interpolate a set ofN via-points obtaining
the continuity of jerk along the whole path. Arbitrary constraints
can be imposed on velocity, acceleration and jerk of each joint
of the robot independently, thus allowing the use of the proposed
method for virtually every industrial manipulator. Moreover the
choice of interpolating functions allows for the user to impose an
arbitrary value of jerk at the first and the last via-point. This fea-
ture is used to plan trajectories which involve repetitive tasks in
a very efficient manner. Both numerical and experimental results
are presented to show the efficiency of the proposed solution.
Comparison with other trajectory planning algorithms prove that
the proposed approaches can achieve a good compromise be-
tween the level of smoothness and the total execution time, when
minimal time trajectories with bounded speed, acceleration and
jerk are taken into account.
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REFERENCES
[1] Biagiotti, L., and Melchiorri, C., 2008.Trajectory planning

for automatic machines and robots. Springer Verlag.
[2] Valero, F., Mata, V., and Besa, A., 2006. “Trajectory plan-

ning in workspaces with obstacles taking into account the
dynamic robot behaviour”.Mechanism and machine the-
ory, 41(5), pp. 525–536.

[3] Piazzi, A., and Visioli, A., 2000. “Global minimum-jerk
trajectory planning of robot manipulators”.Industrial Elec-
tronics, IEEE Transactions on,47(1), feb, pp. 140 –149.

[4] Gasparetto, A., and Zanotto, V., 2007. “A new method for
smooth trajectory planning of robot manipulators”.Mech-
anism and Machine Theory,42(4), pp. 455–471.

[5] Gasparetto, A., and Zanotto, V., 2008. “A technique for
time-jerk optimal planning of robot trajectories”.Robotics
and Computer-Integrated Manufacturing,24(3), pp. 415–
426.

[6] Ho, C., and Cook, C., 1982. “The application of spline
functions to trajectory generation for computer controlled
manipulators”.Digital Systems for Industrial Automation,
1(4), pp. 325–333.

[7] Petrinec, K., and Kovacic, Z., 2007. “Trajectory plan-
ning algorithm based on the continuity of jerk”. In Control
& Automation, 2007. MED’07. Mediterranean Conference
on, IEEE, pp. 1–5.

[8] Boryga, M., and Grabos, A., 2009. “Planning of manipula-
tor motion trajectory with higher-degree polynomials use”.
Mechanism and machine theory,44(7), pp. 1400–1419.

[9] Zefran, M., Kumar, V., and Croke, C., 1998. “On the gen-
eration of smooth three-dimensional rigid body motions”.
Robotics and Automation, IEEE Transactions on,14(4),
pp. 576–589.

[10] Barre, P., Bearee, R., Borne, P., and Dumetz, E., 2005. “In-
fluence of a jerk controlled movement law on the vibratory
behaviour of high-dynamics systems”.Journal of Intelli-
gent & Robotic Systems,42(3), pp. 275–293.

[11] Lin, C., Chang, P., and Luh, J., 1983. “Formulation and
optimization of cubic polynomial joint trajectories for in-
dustrial robots”.Automatic Control, IEEE Transactions on,
28(12), pp. 1066–1074.

[12] Sciavicco, L., and Siciliano, B., 2000.Modelling and con-
trol of robot manipulators. Springer Verlag.

[13] Zanotto, V., Gasparetto, A., Lanzutti, A., Boscariol,P., and
Vidoni, R., 2011. “Experimental validation of minimum
time-jerk algorithms for industrial robots”.Journal of In-
telligent & Robotic Systems, pp. 1–23.

[14] Tangpattanakul, P., and Artrit, P., 2009. “Minimum-time
trajectory of robot manipulator using harmony search algo-
rithm”. In Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology, 2009.
ECTI-CON 2009. 6th International Conference on, Vol. 1,
IEEE, pp. 354–357.

[15] Wang, C., and Horng, J., 1990. “Constrained minimum-
time path planning for robot manipulators via virtual knots
of the cubic b-spline functions”.Automatic Control, IEEE
Transactions on,35(5), pp. 573–577.

[16] Sahar, G., and Hollerbach, J., 1986. “Planning of
minimum-time trajectories for robot arms”.The Interna-
tional journal of robotics research,5(3), pp. 90–100.

9 Copyright c© 2012 by ASME



Appendix A: Matrix M for the ”545” and ”5455” trajectories
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