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ABSTRACT
Planning smooth trajectories is a crucial task for most ad-

vanced robotic applications. Poorly planned trajectores be
inefficient under many aspects, since they might requirng éxe-
cution time and induce unnecessary vibration on the eretff

of the robot as well as high solicitation on its mechanicalist
ture and actuators. In this paper a novel trajectory plarmin
methods for robotic manipulators is introduced, named "545
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are moved along a non-smooth trajectory. In that case prem:
ture joint wear and mechanical failures might occur, as aell

a major worsening of the motion accuracy. Therefore in the la
decades a large number of techniques have been developed to
sign smooth trajectories for industrial robots. An extehdiew

of the problem can be found in the book [1]. Both online and off
line technigues have been developed: this work falls ineddk

ter category. Another fundamental distinction betweensihe

This method is based on an interpolation of a sequence of via eral methods available in literature is the use of a modsétia

points using a combination df" and5™ order polynomial func-
tions. This technique allows to obtain a continuous-jegjec-
tory for improved smoothness and minimum excitation ofavibr
tion. Such method allows also to impose an arbitrary value of
jerk at the first and last via-point. This feature can be dffety
used to produce a smooth trajectory for repetitive taslaigh

an innovative optimization algorithm which is introducecthis
paper. Both numerical and experimental results are prowifie

a 3 d.o.f. Cartesian robot, but the techniques provided lcare

be applied to any industrial manipulator.

INTRODUCTION

The ever growing market of industrial robot applications re
quires the development of high performance trajectorymlamn
algorithms. Severe vibrations arise in manipulators whmeay t

*Address all correspondence to this author.

or of a model-free approach. While model-based approacimes c:
achieve good results in a specific case [2], they lack the ger
erality which is a fundamental requirement for most indastr
application. As a matter of fact most industrial facilitidees
not have the knowledge required to work with model-based ap
proaches, and the investment on personnel training is pated

to be profitable. Therefore model-free approaches, as the or
presented in this paper, are much more appealing for todsg/’'s
ket.

In this paper a novel trajectory planning algorithm for in-
dustrial robot is presented. This algorithm produces anmraht
trajectory starting from the definition of a set of via-painte.
it adjusts the time distance between two consecutive viatpoi
in order to minimize a cost function of choice. Constraints o
velocity, acceleration and jerk at each joint can be spetciie
inputs of the optimization procedure. Similar approachas c
be encountered quite often in literature, since many methoel
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available to produce a time law which interpolates or approx

of vibration reduction, as highlighted by Boryga et al. ij.[8

mates a set of via-points. These works can be classified on theThis feature can be efficiently used to maximize the smoathne

base of different features, such as the choice of the costium
and of the primitive functions used for the interpolatioge-
dure. The paper [3] introduces a method for the evaluation of
minimum jerk trajectories as a global constrained minimpit-o
mization problem. The interpolation is based on a sequefice o
cubic polynomial functions. Continuous jerk can be achieve

this method, but this procedure has very high computatideal
mands. Fifth order B-spline together with a composite tjerk-
cost function are used in [4,5]. Other popular techniques ar
based on simpler interpolation functions, such as the "38”
proach developed by Ho and Cook in [6]. This method relies on
the use of spline functions, but does not guarantee thereotyti

of jerk along the trajectory. The problem of continuity oflje
has been solved by Petrinec and Kovacic in [7], trough theldev

of the motion profile during the critical phase of start-up agst-

ing of the robot. Moreover the free choice of initial and fijeak
allows to retain maximum smoothness even in the case of th
cyclical repetition of the same task.

The evaluation of the effectiveness of the proposed trajec
tory is conducted by means of extensive experimental tests.
three degrees-of-freedom Cartesian manipulator is chémen
testing the novel approach proposed here. Numerical ewéden
confirm that the proposed approach achieves a good level-of pe
formance when compared to other popular trajectory plannin
algorithms [3,4,7,13]. The cost function on which the ojitian
tion procedure is based is the well known minimum time, which
has proved to be a popular approach [14-16], given the appe
of its potential economic advantage for most industrialliapp

opment of the "445" trajectory. Such approach makes use of an tions. Here only the case of minimum time with kinematic con-

interpolation function composed by a sequencedbdder poly-
nomial functions, with a® order function for interpolating the
motion between the last two via-points. The use of polynbémia
functions of even high order allows to produce motion prefile
with superior smoothness, but at the cost of a general iseref
peak values of peak speed, if a constant total executioniime
considered. An example of the use of polynomials functigms u
to the 9" order can be found in [8].

Several papers are focused on keeping the value of jerk lim-
ited and possibly continuous, since jerk heavily affecesabcu-
racy of motion and the solicitation to the mechanical streebf
the robot. Moreover, smooth trajectories are to be predérrer-
der to comply with the bandwidth limitation of the actuatorbe
correlation between trajectory smoothness and the pediocm
of a robotic system has been demonstrated both theorgtjeall
and experimentally [10] in several papers.

The novel method presented here is based on a hew com-

posite trajectory primitive, called "5455”. It uses & Brder
polynomial function as the primitive for the first and thetlgo
segments of the trajectory, while the intermediate segsnard
described by ¥ order polynomial functions. This choice, to-
gether with a suitable choice of the continuity conditioheach
via-point, ensures that:

1. jerk is continuous along the whole trajectory
2. an arbitrary jerk value can be specified for the first and the
last via-point

While the first feature is shared with other algorithms, such

as the ones that are based on cubic splines [11, 12], many ap

proaches do not allow for the operator to choose all the katem
parameters for the first and the last point of the trajectores it
will be shown in the paper, this feature allows to producgtra
tories with null acceleration and jerk at the extreme pofrthe
trajectory, a feature that is reputed to be very importameims

straints is considered, but the "5455" primitive can be use@
starting point for other innovative methods, simply by affiag
the choice of the goal function. The optimization problem ca
be solved easily and with limited computational effort wa#v-
eral optimization routines, such as Matlafsiincon Constraints
can be handled with ease, since the kinematics limits cax-be e
pressed as an explicit function of the time intervals betwaa
consecutive via points.

1 THE "5455” TRAJECTORY

In this section the novel "5455” trajectory planning algo-
rithm will be introduced. Another new algorithm, named "345
will be introduced as well. These two methods are based on
different sequence of polynomial functions. Both algarithal-
low for the use of hard constraints on velocity, acceleratiod
jerk of each joint of the robot independently, thus allowthgir
use for virtually every industrial robot.

The "545” trajectory

The "545" trajectory planning method make use of a se-
quence of ¥ order polynomial function for interpolating the tra-
jectory between the second and the next-to-last via poihie T
remaining first and last segment of the trajectory is intkea
using 3" order polynomial function.

Let us indicate withR, vk, ax and jk the position, velocity,
acceleration and jerk at theth via-point, respectively. The first
segment of the trajectory is, according to the proposed odeth
interpolated trough a polynomial of degree 5, as in:

Fi(t) = B + By ot + By at? + By at® + B st +Beot® (1)
The symbolR(t) represents the position of #rth joint of
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the robot as a function of time. The boundary conditions isgub
on the trajectory along the first segment are:

F(0) =P

v (0) = v

a(0) =a

§(0) = 1 @)
F(T2) =P,

Vk(Tz) =V

It should be noticed that the current choice of boundary con-
ditions allows to choose the value of the jerk at the stanioigt
of the trajectory,j;. This feature is generally used to plan trajec-
tories with initial null jerk. Substituting Eq. 2 into Eq. laws
to evaluate th@®; y coefficients as:

Fe(T2) = Bia +BioTira + BiaTd 1 + +BiaTd 1 + Bus Ty = P
)

Vi(T2) = Br 2+ 2By 3Tky1 + 3Bk,4Tk2+1 + 4Bk,5Tk3+1 =V
(3

The 6 equations in Eq. 12 can be merged in single matrix ex-
pression which shows the explicit expression of the polyiabm

which is valid for 2< k < N — 2, beingN the number of via-
points. Since we are dealing with a four order polynomial, we
need to impose 5 boundary conditions:

F(0) = P
Vk(0) = w

a(0) = a (6)
Fk(Tk+1) Rt

<

k(Tk1) = Vis1

Substituting the boundary conditions into Eq. 5 one obtains

F(0) = Bx1 = K

Vk(0) = By 2 = W

ax(0) = 2By 3 = &

Fe(Tir1) = B+ Bi2Tr1 + BiaTé 1 + Ba T + Bis Ty = P
Vi(Tky1) = B2 + 2By 3Ty 1 + 3Bk74Tka1 + 4Bk,5Tk‘11 = Vk+1

(7)

The expression above can be written in matrix form, show-
ing the explicit values of th8 coefficients:

coefficientsBy 1, B12 ...Byg:
1 0 0 0 0 0]
. o 1 0 0 0 o0 .
1,1 1 1
B1> 0 0 > 0 0 0 v
Bis|_| o 0o o LI o o |.|™
Bia| — 6 '
Bi’: 5 4 3 1 5 1 IJ:,;
’ T2 T3 212 3L, TA T8
T VS S S S S o B
T TOTR 6T T T
4)

The intermediate segments of the trajectory are interpdlat

using the fourth order polynomial function:

F()

= By1 + By ot + B at? + By at® + By st

®)

r1 0 0 0 0 7
By1 0 1 i) 0 0 =9
Bk 2 0 > 0 0 Vi
Bks | = 4 3 1 4 1 A
By 4 TT3. T2 Ty T3, T2 S
: +1
Bks :I3<+1 2k+ 1 ! k+3 1 ]lf+1 Vi1
L T Té 2R T T

(8)
The trajectory between the last and the next-to-last viatpo
is again represented by a polynomial of order 5. Therefore w
need to add one condition to the one presented in Eq. 6. Th
resulting boundary conditions are:

(9)
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Notice that in this case we cannot impose an arbitrary value
onthejy, i.e. the jerk at the last via-point. Using the same proce-
dure applied before, we use the polynomial form for expressi
the positions, the velocities and the accelerations in Eg. 9

~1(0)=Bn-11=Pv1
WN-1(0) =Bn-12 = VWN-1
an-1(0) =2Bn_13=an-1
Fn-1(Tn) = Bn-1.1+Bn-12Tn +Bn-13T +Bn_14Ts
+Bn_15Tn +Bn-16Ty = Py
WN-1(Tn) = Bn_12+2Bn_13TN +3Bn_14Ty +4By_15T3
‘|‘58[\j,176-|_|\£]1 = VN
an-1(Tn) = 2Bn_13+6Bn_14Tn + 12BN 15T
+ZOBN,1’6T|\? =an
(10)
Again, the matrix form of the equation above is:
F 1 0 0 0 0 0 7
0 1 0 0 0 0
_ 1 _
Bn-11 0 0 - 0 0 0 -1
Bn-12 0 6 %3 10 4 1 Nt
Bno13 | 2 _° 2 _* - an_1
Bn-14| Téﬁ T2 T T3 2T Ry
Bn-15 L 33 ;_ __Ilj 13 _Tilz VN
Bn._ T T an
N1 “é T - A T
R R A I I R
(11)

The equations above, specifically Eq. 7,8,11, are not suffi-
cient to evaluate all the kinematic parameters at evenypuiat.
Acceleration and jerk at the second via-point can be evatuat
trough the 294 and 39 time derivative of Eq. 1:

ap = 2By 3+ 6By T2+ 12B1 5TZ + 208, 6T

. 2 (12
j2=6B14+ 2481,5T2 + 6081-,6T2

The velocities and the accelerations at the other via-point
can be evaluated using the continuity conditions of acattar
and jerk. If the three consecutive via-poiRs R, 1 andR, » are
considered, the acceleration at end of the first segment is:

aw(Tkr1) = 2Bya+6ByaTis1 + 12BysT2 ¢ (13)

while the jerk at the same point is:

Jk(Tks1) = 6By 4+ 24By 5Ty 1 (14)

Acceleration and jerk at the beginning of the second segmer

are:

a1(0) = 2Bii13 (15)

Jk+1(0) = 6By 1.4 (16)
Continuity of acceleration and jerk impose that Eq. 13 must
be equal to Eq. 14, and that Eq. 15 must be equal to Eq. 1¢

Thus we obtain, respectively:

12

6 6
—V Vi 17
T k+ak+.|_+1 k+1 — A+1 = Tk2+1(H(+l R) (17)
3'OV+6rau<+(18+18)v +6ak+ —V
k kil + =42 k2
Tk2+1 Tera Tk2+1 T " T2 ! Tk+2 i
(18)
48
=13 = (A1 —R)+ T3 (F1<+2—F1<+1)
k+1 k+2

Continuity of acceleration and jerk for the last two segreent
can be expressed as:

an-2(Tn-1) = an-1(0) (19)

in-2(Tn-1) = jn-1(0) (20)

Using the right values into Eqg. 19 and 20 we obtain:

(H<+1 ) (21)

k+l

3 1
T Wkt &+ >

= Vik+1—
2 +

3
Tk+ 1
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D ot ANt (ot Wt Ay =
T2, VP TN AT TN o
(22)
8 10 4 1
g — _ — J— _ _7V PR
TN371(F’N 1—Ry z)+TN3(H\ Pn-1) T2 N+2TNaN

The "5455” trajectory

The novel "5455" trajectory can be thought as an improved

version of trajectory "545”. This primitive function is bad on
the use of §' order polynomial functions for the first and the
last two segments of the trajectory. All the other segmerds a
described by ¥ order polynomial functions. In this way, it is
possible to achieve the following goals:

1. jerk is continuous for the whole trajectory

The results provided above can be used to determine a sin- 2. the value of jerk at the first and last via point can be imdose

gle matrix expression which allows to evaluate all the kingém
variables that are not imposed with the definition of theetraj
tory planning problem. We can define the matvx a vector of
unknown velocities and acceleratiobs whose length iN — 2,
and a vector of coefficientd. M is defined so that the following
relationship holds:

M-D=H (23)

Matrix M has size(2N — 4) x (2N — 4). The expressions
of D andH are reported below. The expression of matvixis
reported in Appendix A.

V2 hy
ap h2
V3 h3
az
D=| H= (24)

VN-2

an-—2

VN-1 hon_s

| an-1 | | hon—4 |
in which:
20

12 1.
hy (PL—P)+=vi+3a; + éTZJl

48 24 30 6
hy = F(Pz—Pl)-i-ﬁ(Ps—Pz) — V- —a&
2 3

7' T
hac1=12(Rg1—R), k=2...N-3

hox = 8T, o(Frr — R) + 4T3, 1(Ag2 — Pr1), k=2,...,N-3
6
h2N—5—_|_2 (Pn-1—Pv-2)
N-1
8 10 4 1
hon 4= —o— (A1~ P_2) + —a (P — PN_1) — oW+ =
ON—4 T,\?,l(PN 1—R 2)+T§,(PN Av-1) T2 N+2TN3N
(25)

It should be pointed out that the "545" trajectory only allow

to choose the value of the jerk only at the first via point. Bher
fore the choice of a "5455” trajectory sports an extra degree
freedom, in comparison to the "545”. When planning a "5455”
trajectory, the user might choose to achieve a null jerk etk
tremities of the path (i.ejo = 0 and jy = 0), or he can choose
to impose two arbitrary values fgs and j. The first choice has
more appeal when maximum smoothness is the goal, while th
second one can be efficiently exploited when the trajecttany-p
ning includes a composite trajectory. One example of a piulét
use of nonzero initial and final jerk is the planning of trajeies
with repetitive tasks. This case will be dealt with at the efd
this section.

The formulation of the "5455” is the same as the one devel-

oped for the "545”, with the exception of the boundary condi-
tions for the two last segment of the trajectory. The 6 bownda
conditions for the next-to-last segment are:

(26)

which can be translated into the following matrix expres-

sion, after the expression of th& ®rder interpolating function

is used:
r 1 0 0 0 0 0 1
Bn-2.1 o 1 0 0 0 0 PN-2
Bn-22 o o 1} O 0 o0 VN-2
Bv-23| _| 10 6 % 10 4 1 | |&wn-2
N-2,5 Tl\‘ll—l Tr\f71 ZTI\%—l Tr\t1 Tr\?71 Tl\%—l UN-1
BN—2,6 _ .6 _ 3 __1 6 __3 1 an-_1
TN 1 Tl\‘} 1 2Tf\? 1 Tl\\?f 1 Tf\éltf 1 2TN -1 4

(27)
Boundary conditions for the last segment of the trajectory

are:

Copyright © 2012 by ASME



Fn-1(0) =Ry

WN-1(0) =WN-1

Fno1(Th) = Py

WN-1(Th) = W (28)
an-1(Tn) = an

in-1(Tn) = N

Trajectory planning for repetitive tasks

As stated before, the proposed "5455” method allows to im-
pose the value of jerk at the initial and final point of theerpry.
We here exploit this feature to efficiently plan trajecteniehich
include repetitive tasks. Let us take into consideratiomsk t
which includes: 1) an initial (or "speed-up”) phase 2) a tépe
task which is to be repeatéd time 3) a final (or "slow-down”)
phase. Each phase is described by a set of via-points, weitash
via-point of phase 1 equal to the first via-point of phase 2e Th
same applies for the last point of phase 2 and the first of phase
If the number of cycleM is large (10 or even more), the numeri-

Notice that here, unlike the "545”, we can impose the jerk cal solution of the optimization algorithms can be jeopzedior,

even at the last via-point, i.gy. This is possible because the use

in the best option, it can be dramatically slowed down. A pos-

of 5" order polynomial function for a single segment instead of a sible solution is to adopt the following strategy, which gpa
4 order, as in the "545”, allows to use one more degree of free- lower computational burden: we can split the problem inte¢h
dom on the choice of the boundary conditions. Using the same parts, to be solved in the specified order:

procedure as before, boundary conditions for the last segme

can be condensed in a single equation:

1 0 0 0 0 O
0O 1 0 0 0 O
Bn-11 21 4 10 6 3 1 AN-1
Bn-12 T2 Tn T,\% In 2 6TN VN_1
Byas| |20 6 2014 4 1 | |R
Bv-ta| | T3 T2 T3 T2 W2 || w
Buis| | 45 4 18 11 7 1| | a4
Bn_16 TE T3 T T3 2T2 2Ty in
ARSI A Y
R TN T TN TS 6T

(29)
The new formulations of matricd® andH are the same as
in Eq. 24, with the exception of 4 elements of matrix

6
hon-—7 = TT(H\H —P-3)
N-2
8 10
hon-6 = m(ﬂvz —R-3) + m(a\lfl —R-2)
20 12 1_ .
hon_5 = TT\ZI(PN —Pvo1) - ﬂVN +3an — §TNJN (30)
20 20 40 40
hona = — Py — (o — TRy —
2N—4 Tl\?—lH\‘ 2 (T,\?,l T,\?)FN 1 T'\?Pi\ﬁ
+ﬁv ,E +'
3T,§ N TNaN IN

1. determine through an optimization problem the optimal
values of the time intervals between each two consecu
tive via-points belonging to the cycle to be repeated, i.e.
M1, Tk2,---, Tkn], and of the initial and final conditions
[ICk = FC]

2. determine the optimal trajectory for the phase 1, witlozer
initial conditions (on velocity, acceleration and jerkpda
with final conditions equal to the initial conditions evaied
at the previous step, i.¢Cy

3. determine the optimal trajectory for the phase 3, witlozer
final conditions (on velocity, acceleration and jerk), arithw
initial conditions equal to the final conditions evaluated a
the first step, i.eFCy

In this way we have a procedure that guarantees the contint
ity of jerk for all the duration of the task, and that startsl @mds
with null jerk for minimum induced vibrations.

Experimental results: comparison with other methods

In this section the effectiveness of two novel trajectoampl
ning algorithm is evaluated trough experimental comparigith
other common methods available in literature. For all thst te
cases, minimum time trajectory with bounded speed, aaeler
tion and jerk are taken into consideration. Results areioéda
using a 3 d.o.f. Cartesian manipulator, which uses commonl
available drive units. A picture of the robot is availabld-ig. 1.
Therefore it replicates the structure and the hardware of-co
monly available industrial robots. The kinematic constisi
have been chosen as in Table 1, according to the datasheesval
of the robot prototype. The maximum value of jerk is an arbi-

The above conditions can be used to compute the new cor- trary value, since this data is not available from any daash

rect formulation for matrixM, which is reported in Appendix
A.

Generally this limit can be used to control the smoothnegkef
trajectory.
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TABLE 1. KINEMATIC CONSTRAINTS
Min value Max value
Velocity -225mny's 225mmny's
Acceleration -2400nnys®  2400mnys’
Jerk -2400mnys®  2400mny's®

FIGURE 1. THE CARTESIAN MANIPULATOR USED FOR EX-
PERIMENTAL TESTS

Pick & place trajectory

This tests is aimed at evaluating the accelerations alomg th
Z axis on the end effector on the manipulator for a pick & place
trajectory. Results are provided for several planning ritigms,
such as the SPL3J [5], the "434" [6], "445" [7], "5455" and
BSPL5J [5]. Simulated accelerations are shown in Fig. 2. The
trajectory is specified as a sequence of 8 via-points. Asrit ca
be seen in Fig. 2, the SPL3J methods produces an interpolatio
which is quite prone to induce vibrations on the end effector
since there are 10 points with discontinuous jerk. The appli
tion of the "434” and the "445" algorithms results in trajexes
with 8 and 2 jerk discontinuities, respectively. Null iaitiand
final jerk can be obtained only by the "5455” and the BSPL5J
methods. In the case under consideration, it can be seethéhat
SPL3J, the "434" and the "445” methods produce similar rssul
since there is a small variation among them in terms of total e
ecution time, and in the magnitude of the peak accelera#aen.
it can be seen in Fig. 3, and as expected from theoreticaltsesu

7

TABLE 2. EXPERIMENTAL TESTS: PICK & PLACE TRAJECTO-
RIES
SPL3J 434 455 5455 BSPL5J
execution timgs|  4.838 5.002 4.888 5.671 5.660
RMS acc.[m/s?]  0.2229 0.2026 0.2052 0.1520  0.1569
Jace [mP/s%] 0.4146 0.3974 0.3912 0.2595 0.2564

the "455” methods can produce the lowest amount of accelere
tion among the three algorithms considered above. Thectraje
tories planned with "5455” and BSPL5J methods have viryuall
the same execution time, while the peak value of the simiilate
acceleration (see Fig. 2) for the BSPL5J is the lowest amioaig t
5 methods. On the other hand, the experimental results shov
that the measured acceleration on the end effector of that rob
for the case of the "5455” is not worse than the one obtaine
with the BSPL5J method. The exact values of total executior
time, of root mean square (RMS) acceleration and of the time
integral of squared acceleration measured on the endt@ff@e
reported in Table 2 to provide a more accurate evaluatiohef t
experimental evidences.

600

400

2001

-2001

acceleration [mm/s?]
o

-4001

-600
0

FIGURE 2. COMPUTED ACCELERATIONS ALONG THE Z
AXIS FOR THE PICK & PLACE TRAJECTORY

Circular trajectory

This tests involves planning a trajectory by interpolating
sequence of 7 via points located on a circle which lies on aepla
that is not parallel to th&Y plane. In this way all the three axes
of the robot are moved at the same time. Figure 4 shows th
planned accelerations for the Z axis of the robot. The aismlys
of the figure shows that all the methods under consideration p
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Acceleration [m/sz]

Time [s]

Acceleration [m/sz]

Time [s]
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Time [s]
FIGURE 3. MEASURED ACCELERATIONS ALONG THE Z

AXIS FOR THE PICK & PLACE TRAJECTORY

duce different total execution time. The fastest trajgcisy as
expected, the SPL3J, while the slowest is the "5455". Foethe
act values, refer to Table 3. From the data available in Fand
Table 3, it can be seen that the BSPL5J produces the trajector
with the lowest time integral of the squared acceleratiorihan
end-effector, while the "5455” achieves the lowest valuRbfS
acceleration. Therefore we can evaluate that the level dbpe
mance in terms of vibration for the "5455” and the BSPL5J are
basically the same.

500

—
0

IS

£ \

& 0 1
IS

5 ——SPL3J

Q — 434

o

© —— 445

5455
—— BSPL5J
-500 L L
0 1 2 3 4 5 6

time [s]

FIGURE 4. COMPUTED ACCELERATIONS ALONG THE Z
AXIS FOR THE CIRCULAR TRAJECTORY

TABLE 3. EXPERIMENTAL TESTS: CIRCULAR TRAJECTO-
RIES
SPL3J 434 455 5455 BSPL5J
execution timgs]  4.255 4,718 4844  5.4190 5.095
RMS acc.[m/s¥] 0.2424 0.2218 0.1999 0.1870  0.1942
fac@ [mP/s°]  0.5022 0.439 0.3708 0.3610  0.3455
CONCLUSION

In this paper a new trajectory planning algorithm has beer
presented. It allows to interpolate a sef\bfia-points obtaining
the continuity of jerk along the whole path. Arbitrary caagits
can be imposed on velocity, acceleration and jerk of eactt joi
of the robot independently, thus allowing the use of the psegl
method for virtually every industrial manipulator. Moremthe
choice of interpolating functions allows for the user to oep an
arbitrary value of jerk at the first and the last via-pointisliea-
ture is used to plan trajectories which involve repetitizeks in
a very efficient manner. Both numerical and experimentalltes
are presented to show the efficiency of the proposed solutior
Comparison with other trajectory planning algorithms fertivat
the proposed approaches can achieve a good compromise t
tween the level of smoothness and the total execution tirhenw
minimal time trajectories with bounded speed, accelenadiod
jerk are taken into account.
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Appendix A: Matrix M for the "545” and "5455” trajectories
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