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SUMMARY
In this paper, a numerical investigation of the Model
Predictive Control strategy applied to flexible-link
mechanisms is presented. The mechanisms used for all the
tests are a planar five-link mechanisms. The tests are aimed at
showing how the proposed control system can be used for the
trajectory tracking and the vibration suppression. An analysis
of the effects of the choice of tuning parameters is presented
as well. The design of the predictive controller is based on a
linearized version of an accurate nonlinear dynamic model.
The effectiveness of the proposed approach is confirmed by
extensive numerical results.
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1. Introduction
Modeling and the control of flexible-link mechanisms
are fundamental topics in robotics engineering. Severe
vibrations due to inertial components of the motion arise in
manipulators when they are exposed to large accelerations.
If neglected, these dynamic effects can lead to major
worsening of accuracy, mechanical failures, and instability.1

The complexity of the problem is very high when dealing
with both modeling and control since an accurate description
of the dynamics in multilink flexible mechanism requires
complex and nonlinear models.2 The problem is even more
challenging when trajectory tracking in the operational space
is required since the requirements on accuracy are even much
stricter.

As far as the modeling of multilink flexible mechanism is
concerned, many different solutions have been proposed in
the last 40 years. A comprehensive review can be found in ref.
[2]. Among the different approaches, Finite Element Method
(FEM) has been the most popular. This approach, which
is based on the discretization of elastic deformation into a
finite set of nodal displacements, has been used in refs. [3,
4]. Some authors have also proposed a description of flexible-
link mechanisms making use of modal coordinates in places
of physical coordinates.5, 6 Further approaches can be found
in refs. [7, 8]. The majority of works has been conducted
on single-link flexible mechanism9, 10 and multibody systems
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with only one flexible link, as in refs. [11, 12]. In refs. [13] and
[14], the authors deal with multibody flexible mechanisms:
in the former, a regulator for controlling a three Degrees
Of Freedom (DOFs) planar manipulator with two flexible
links is presented, while the latter concerns a two planar
cooperating three-link flexible robot with payload.

The aim of this paper is to investigate the effectiveness
of the Model-based Predictive Control (MPC) strategy for
trajectory tracking and vibration control in multilink flexible
mechanism with two rigid DOFs, in order to extend the
results already developed by the same authors in refs.
[21, 22] and to further develop a new branch of research.
MPC refers to a family of control algorithms that compute
the optimal control sequence based on the knowledge of
the plant and the feedback information. This information,
together with a set of constraints, is used as the basis of an
optimization problem. The use of MPC to control vibration
in mechanisms has been investigated in a limited number
of scientific papers. For example, MPC controller has been
applied to the vibration control of a simple structure in
ref. [15], while vibration control in different mechanisms
has been presented in refs. [16–18]. Again, on the subject
of predictive control for flexible-link mechanisms, even
less papers have been written: to authors’ knowledge the
only papers focusing on this subjects are.19–22 In refs.
[19–21], predictive control strategies have been used to
control the position and the vibrations of a single-link
mechanism, while in ref. [22] a constrained MPC has been
applied as a position regulator to a four-link closed-chain
flexible-link mechanism. The choice of this control strategy
has been motivated by different factors. First, the prediction
ability based on an internal model can be a very effective
tool in fast-dynamic systems. Then, MPC is well suited
to Multiple-Inputs–Multiple-Outputs (MIMO) systems since
the outputs are computed by solving a minimization problem,
which takes account of different variables.

This work is meant to be an extension of previously
published works21, 22 in the wake of the very good results
obtained trough predictive control action. The mechanism
under investigation in this paper is a five-link planar
mechanisms, with flexibility distributed in all the links. The
previous papers are focused on a single-link21 and a four-
link mechanism.22 For this reason, this paper investigates
the behavior of a multiactuated Flexible-Link Manipulator
(FLM). The presence of two rigid DOFs allows to study
the response of the closed-loop systems for bidimensional
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trajectory tracking problems. In particular, the tracking in
both the operational and joint space is being investigated in
this work. This is a problem of high interest since it is well
known that a system that performs a good tracking in the joint
space will not necessarily perform with sufficient accuracy
in the operational space, i.e., the motion of the end effector
could be inaccurate.1 A major worsening of the end-effector
trajectory tracking can be caused by a less than sufficient
synchronization between the motion of the two axis. The
effects of the reference-lookahead are here investigated to
evaluate how this technique can improve the accuracy of the
closed-loop system. Moreover, the effects of the choice of
different interpolating function for the trajectory planning of
the end effector are investigated. None of the cited papers
deals with the aspects highlighted here.

This paper is organized as follows: the nonlinear dynamic
model of the flexible-link mechanism is briefly introduced in
Section 2. Section 3 provides a description of the mechanism
available in the Mechatronics Laboratory at the Faculty
of Engineering, University of Udine (Italy). In the last
part of the Section 3, the state observer employed in the
closed-loop system is shown, together with some numerical
results that demonstrate its accuracy. A description of the
predictive control strategy is reported in Section 4, while a
detailed report of different simulation results can be found
in Sections 5 and 6. In Section 5, the MPC controller
is used to simultaneously control the vibration and track
a reference signal in the joint spaces. The effects of the
reference lookahead strategy are shown, together with some
results of the controller robustness to plant parametric
mismatches and noises. The effects of different choices
of the control tuning parameters are investigated as well.
Section 6 deals extensively with the problem of trajectory
tracking in the operational space. The effectiveness of the
controller during high speed motion is investigated by means
of exhaustive simulations. The effects of different choices
of tuning parameters and trajectory planning strategies
are investigated. The results presented here were obtained
trough numerical simulation, using the MATLAB/Simulink
environment.

2. Dynamic Model of a Five-Link Planar Mechanism
In this section, the dynamic model of flexible-link
mechanisms proposed by Giovagnoni4 will be briefly
explained. The choice of this formulation among the several
proposed in the last 40 years has been motivated mainly by
the high level of accuracy allowed by this model, which has
been proved several times, for example, in refs. [23, 24].

The main characteristics of this model can be summarized
in four points:

(1) FEM formulation.
(2) Equivalent Rigid-Link System (ERLS) formulation.
(3) Mutual dependence of rigid and flexible motion.
(4) Suitability to mechanisms with an arbitrary number of

both flexible and rigid links.

Each flexible link belonging to the mechanism is
subdivided into finite elements. The motion of the mechanism
can be thought as the superposition of the motion of an ERLS

Table I. Nomenclature used in Eq. (1).

Symbol Description

q vector of the free coordinates
u vector of nodal displacements

M mass matrix
K stiffness matrix
S sensitivity coefficient matrix
I identity matrix

MG matrix of Coriolis acceleration contributions
g vector of gravity forces
τ vector of external forces

α, β Rayleigh damping constants

and the elastic motion of the nodes of the finite elements.
Therefore, the free coordinates of the system are the angular
position of the two cranks (vector q) and the vector of the
nodal displacements u. The dynamic equations of motions
are⎡

⎢⎢⎢⎣
M MS 0 0

STM STMS 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ü
q̈
u̇
q̇

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M I

STM ST

0 0
0 0

⎤
⎥⎥⎥⎦

[
g
τ

]

+

⎡
⎢⎢⎢⎣

−2MG − αM − βK −MṠ −K 0

ST(−2MG − αM) −STMṠ 0 0
I 0 0 0
0 I 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u̇
q̇
u
q

⎤
⎥⎥⎥⎦ (1)

in which g and τ are the vector of gravitational forces and the
vector of external forces, respectively. It should be pointed
out that in this model the mentioned rigid and elastic motions
are totally coupled each other. The nomenclature employed in
Eq. (1) is reported in Table I. For a more detailed description,
see ref. [4].

3. Five-Links Mechanism
The mechanism under consideration is the two DOFs
manipulator carried out at the Mechatronics Laboratory,
Faculty of Engineering, University of Udine, Italy. It is
made up of four steel rods connected in a closed-loop chain
by using five revolute joints. The motion of the cranks
(namely, the first and the fourth link counting anticlockwise)
is governed by two torque-controlled actuators. The fifth
link (i.e., the chassis) can be considered to be perfectly rigid
without affecting the accuracy of the model. The mechanical
characteristics of the mechanism are shown in Table II. As
it can be seen, the links are very thin (their square section is
just 6 mm wide) so the whole mechanism is quite prone to
vibration.

The longest links, i.e., the second and the third counting
in anticlockwise direction, have been modeled with two
Euler–Bernoulli element beam each. The other two flexible
elements are described by a single beam element. Every
single beam element has six elastic DOFs, so its elastic
behavior is completely described by six nodal displacements.
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Table II. Kinematic an dynamic characteristics of the flexible-link
mechanism.

symbol value

Young’s modulus E 200 × 109 Pa
Flexural inertia moment J 1.08 × 10−10 m4

Beams width a 6 × 10−3 m
Beams thickness b 6 × 10−3 m
Mass/unit of length of links m 0.282 kg/m
Length of first link L1 0.3 m
Length of second link L2 0.6 m
Length of third link L3 0.6 m
Length of fourth link L4 0.3 m
Ground length L5 0.3 m
Rayleigh damping constants α 8.72 × 10−2 s−1

β 2.1 × 10−5 s

Fig. 1. Elastic displacements and angular position in the five-link
mechanism.

On the other hand, the links discretized with two beams
have nine DOFs. Considering the continuity between nodal
displacements, the overall number of elastic DOFs is 24, as
it can be seen in Fig. 1. Four of them ([u19, u20, u23, u24])
must be forced to zero to take into account the rigidity of
the chassis. Other two displacements must be forced to zero,
in order to solve Eq. (1), as explained in ref. [4]. With this
choice of finite element discretization, the motion of the
mechanism is described by 18 nodal elastic displacements
(u = [u1, u2, . . . , u18]T) and two rigid DOFs (q = [q1, q2]T).
A larger number of finite elements could have been used, but
at the cost of increasing the computational cost required to
perform the simulation and compute the control sequence.

3.1. Linearized model
The dynamic model in Eq. (1) is nonlinear since matrix Ṡ
contains the values of the velocities q̇ of the free coordinates
(i.e. Ṡ = Ṡ(q̇, q)), which yield a quadratic term q̇2 in the
velocities of the free coordinates.25 As such, it cannot be
used as a prediction model for linear MPC controllers. In
order to obtain a linear version of the dynamic system, the
linearization procedure developed by Gasparetto in ref. [25]
has been followed. From the basics of system theory, a linear
time-invariant proper model expressed in state-space form

can be written as{
ẋ(t) = Flinx(t) + Glinw(t)

y(t) = Hlinx(t),
(2)

where x(t) is the state vector; y(t) is the output vector; w(t)
represents the input vector; and Flin, Glin, and Hlin are time-
invariant matrices. The feedthrough term has been neglected
in Eq. (13) since the output of the system is simply a linear
combination of the state vector.

The input w(t) for the system is a vector that
includes the torques applied to the first and the
fourth link: w(t) = [τ1, τ2]T. The state vector is x(t) =
[u̇1, . . . , u̇18, q̇1, q̇2, u1, . . . , u18, q1, q2]T. The output vector
is y(t) = [u1, u18, q1, q2]T since this is the subset of the state
that is available to the control system as measured variables.
In practical applications, u1 and u18 are measured by means
of strain gauges, while q1 and q2 can be measured by using
rotary encoders.

Equation (1) can be written in the following form:

A(q, q̇, t)ẋ(t) = B(q, q̇, t)x(t) + C(q, q̇, t)w(t) (3)

to point out that the matrices involved in Eq. (1) are time-
variant and they depend also on q and q̇, i.e., the position and
the velocity of the DOFs. Matrices A(q, q̇, t), B(q, q̇, t), and
C(q, q̇, t) can be linearized around an equilibrium point xe,
yielding from Eq. (1) to Eq. (4)

Alinẋ(t) = Blinx(t) + Clinw(t). (4)

After some steps that can be found in detail in ref. [25],
Alin and Blin in Eq. (4) can be written as

Alin =

⎡
⎢⎢⎢⎣

M MS 0 0

STM STMS 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎥⎦

x=xe

, (5)

Blin =

⎡
⎢⎢⎢⎣

−2MG − αM − βK 0 −K 0

ST(−2MG − αM − βK) 0 0 0
I 0 0 0
0 I 0 0

⎤
⎥⎥⎥⎦

x=xe

, (6)

Clin =

⎡
⎢⎢⎢⎣

I

ST

0
0

⎤
⎥⎥⎥⎦

x=xe

. (7)

In the previous equations, the symbol [·]x=xe
means that

the matrices involved in these formulas, which depend on x,
are evaluated in the configuration described by x = xe. So,
Eq. (2) can be rewritten in terms of Alin, Blin, and Clin as{

ẋ(t) = A−1
linBlinx(t) + A−1

linClinw(t)

y(t) = Hlinx(t).
(8)
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Fig. 2. Torques applied to derive plots in Figs. 3–5.

3.2. State observer
As it will be explained in the next sections, the algorithm used
by the MPC requires the whole state vector x be available at
every iteration of the controller. Since in practical situations
it is impossible to measure all the 18 nodal displacements that
belong to the state vector, a state observer must be used. Here,
a Kalman asymptotic estimator has been used. An estimation
of x(k) and xm(k) (where x(k) is the state of the plant model
and xm(k) is the state of the measurement noise model) can
be computed from the measured output y(k) through

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
x̂(k|k)

x̂m(k|k)

]
=

[
x̂(k|k − 1)

x̂m(k|k − 1)

]
+ M(y(k) − ŷ(k))[

x̂(k + 1|k)

x̂m(k + 1|k)

]
=

[
Flinx̂(k|k) + Fww(k)

F̃x̂m(k|k)

]
ŷ(k) = Hlinx̂(k|k − 1).

(9)

The ·̂(t1|t2) symbol represents the estimation of value that
will be assumed by the variable under consideration at time
t1 using its value at time t2. M is the gain matrix of the
observer, while Fw and F̃ represent the measurement noise
model of the plant.
M, Fw, F̃ have been designed using Kalman filtering

techniques. In this way, the state observer can give an accurate
estimation of the full state x from the knowledge of u1,
u18, q1, and q2. This observer presents a very high level
of accuracy: some results that prove its performances are

shown in Figs. 3–5. The results shown in this graph have
been derived by stimulating the nonlinear plant with the
impulsive torques, as shown in Fig. 2. These graphs compare
the actual nodal displacement and angular positions with
their estimated values.

Here, the results are shown only for two rigid rotations and
one nodal displacement, but the likeness holds also for all the
other nodal displacements belonging to the state vector.

4. Constrained Model Predictive Control
Constrained MPC control is based on these three basic ideas:
� Receding horizon strategy.
� Internal prediction model.
� Constraints on both control and controlled variables.

In this section, a very brief explanation of mentioned
concepts is given.26–28

4.1. Receding horizon strategy
Here, a single-input–single-output plant will be taken as a
matter of example, but the formulation used can be applied
without additional efforts to the MIMO case as well. Defining
k as the discrete time variable, y(k) and s(k) are the current
plant output and the current set-point value, respectively,
while w(k) is the plant input value. Then, a reference
trajectory r(k|t) can be defined as the ideal trajectory the
plant should follow starting from y(k) to reach optimally
the set-point trajectory s(k). r(k) can be calculated from the
current error ε(k):

ε(k) = s(k) − y(k) (10)

and ε(k + i), which is the error found i sampling instants
later

ε(k + i) = e−iTs/Tref ε(k) = λiε(k), (11)

where Ts is the sampling interval and λ = e−Ts/Tref ∈ (0, 1).
A suitable formulation for the reference trajectory is

r(k + i|k) = s(k + i)−ε(k + i) = s(k + i)−e−iTs/Tref ε(k),
(12)

where r(k + i|k) is the reference trajectory at time k + i

evaluated in k. The availability of an internal prediction
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Fig. 3. (a) Comparison of actual and estimated angular position, estimation error for q1; (b) absolute error on q1.
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Fig. 4. (a) Comparison of actual and estimated angular position, estimation error for q2; (b) absolute error on q2.
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Fig. 5. (a) Comparison of actual and estimated nodal displacement, estimation error for u8; (b) absolute error on u8.

model allows to compute an estimation of the future input
sequence ŵ(k + i|k) with i = 0, 1, . . . , Hp − 1. Hp is the
prediction horizon, i.e., the length measured as number of
discrete time steps over which an estimation of the plant
future dynamics is calculated.

The control variable sequence {ŵ(k|k), ŵ(k + 1|k), . . . ,
ŵ(k + Hc + 1|k)} is calculated by minimizing a cost
function. This sequence is composed by Hc steps. The
length Hc is called control horizon, and usually Hc < Hp.
After computing the future control sequence, only the first
element of this sequence is applied as the input signal to
the plant: w(k) = ŵ(k|k). At the following sampling interval
the sequence of output measurements, predictions and input
trajectory calculation is repeated, yielding y(k + 1), r(k +
i + 1|k + 1) with i = 0, 1, . . . , Hp − 1. The prediction is
formulated over k + 1 + i, where i = 0, 1, . . . , Hp − 1.
From those, a new sequence of input values can be
calculated: w(k + 1 + i) = ŵ(k + 1 + i|k + 1) with i =
0, 1, . . . , Hp − 1. Again, only the first element of the
reference trajectory is applied to the plant: w(k + 1) =
ŵ(k + 1|k + 1) and so on. Since the length of the prediction
horizon Hp remains constant over the time, and the prediction
horizon “slides” forward each time step, this strategy
is commonly mentioned as receding horizon strategy. A
graphical representation of this concept can be found in
Fig. 6.

Fig. 6. Receding horizon strategy.

4.2. Model prediction
Given a LTI plant in state-space form⎧⎪⎨

⎪⎩
x(k + 1) = Fx(k) + Gw(k)

y(k) = Hx(k)

z(k) = Hzx(k),

(13)
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where x(k) is the state vector, while y(k), z(k), and w(k)
are the vectors of outputs, controlled variables, and inputs,
respectively. F,G, H, and Hz are the discrete time version
of the matrices of LTI linearized model presented in Section
3.1. Assuming that the whole state x(k) is measured, the
future behavior of the plant at time k over Hp steps, [x̂(k +
1|k), . . . , x̂(k + Hp|k)], can be evaluated by iterating the first
of Eq. (13)

x̂(k + 1|k) = Fx(k) + Gŵ(k|k)

x̂(k + 2|k) = Fx̂(k + 1|k) + Gŵ(k + 1|k)
...

x̂(k + Hp|k) = Fx̂(k + Hp − 1|k) + Gŵ(k + Hp − 1|k)

= FHp x(k) + FHp−1Gŵ(k|k) + · · · + Gŵ(k + Hp − 1|k).
(14)

Such equation can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂(k + 1|k)
...

x̂(k + Hc|k)

x̂(k + Hc + 1|k)
...

x̂(k + Hp|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
...

FHc

FHc+1

...

FHp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G
...

Hc−1∑
i=0

FiG

Hc∑
i=0

FiG

...
Hp−1∑
i=0

FiG

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w(k +1)

︸ ︷︷ ︸
past

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G · · · 0
FG + G · · · 0

...
. . .

...
Hc−1∑
i=0

FiG · · · G

Hc∑
i=0

FiG · · · FG + G

...
...

...
Hp−1∑
i=0

FiG · · ·
Hp−Hc∑

i=0
FiG

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ �ŵ(k|k)

...
�ŵ(k + Hc − 1|k)

⎤
⎥⎦

︸ ︷︷ ︸
f uture

(15)

or, in a compact form

X (k) = Fx(k) + Gw(k + 1) + ��W(k). (16)

Prediction values of outputs and controlled variables are
calculated from the predicted states by

⎡
⎢⎣

ŷ(k + 1|k)
...

ŷ(k + Hp|k)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

H 0 · · · 0

0 H · · · 0
...

...
. . .

...

0 0 · · · H

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣

x̂(k + 1|k)
...

x̂(k + Hp|k)

⎤
⎥⎦ (17)

⎡
⎢⎣

ẑ(k + 1|k)
...

ẑ(k + Hp|k)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Hz 0 · · · 0

0 Hz · · · 0
...

...
. . .

...

0 0 · · · Hz

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣

x̂(k + 1|k)
...

x̂(k + Hp|k)

⎤
⎥⎦

(18)

or, in a compact form

Y(k) = HyX (k) (19)

Z(k) = HzX (k) = 	x̂(k) + ϒw(k − 1) + ��W(k), (20)

where: 	 = HzF , ϒ = HzG, � = Hz�.

4.3. Constrained optimization solution
As already stated before, the evaluation of the optimal
control sequence is obtained by minimizing a cost function.
According to the receding horizon principle, such evaluation
is performed at every iteration of the controller, and only
the first element of the computed control sequence W(‖) is
actually fed to the plant. W(k) is calculated as the minimum
of the cost function

V(k) =
Hp∑
i=1

‖ẑ(k + i|k) − r(k + i)‖2
Q

+
Hc−1∑
i=0

‖�ŵ(k + i|k)‖2
R , (21)

which can also be written as

V(k) = ‖Z(k) − T (k)‖2
Q + ‖�W(k)‖2

R . (22)

Q and R are diagonal matrices of weights: the former
is used to penalize the quadratic norm of the deviation
of the output from the desired trajectory, while the latter
penalizes the magnitude and the change-rate of the control
variable. The minimization of the cost function V(k) can be
constrained. In this case, linear inequalities on the control
variables, their change rate, and the controlled outputs are
considered as

wimin ≤ wi(k) ≤ wimax, (23)

�wimin ≤ �wi(k) ≤ �wimax, (24)

zimin ≤ zi(k) ≤ zimax. (25)

All the inequalities can be merged into a single matricial
inequality, using Eqs. (16), (19), and (20), as functions of the
vector of increments of the control variables �W(k):

��W(k) ≤ θ . (26)

The procedure followed to rearrange the inequalities is
omitted, the details can be found in ref. [26]. Therefore, the
minimization problem can be stated as{

min
�W(k)

V(k)

s.t. ��W(k) ≤ ϑ
(27)
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with

V(k) = ‖Z(k) − T (k)‖2
Q + ‖�W(k)‖2

R .

It can be shown (see ref. [26]) that the minimization
problem (27) is equivalent to{

min
�W(k)

�W(k)TH�W(k) − GT�W(k)

s.t. ��W(k) ≤ ϑ
(28)

since V = constant − �W(k)TG+�W (k)TH�U(k), where
G = 2�TQE(k), H = �TQ� + R. E(k) is the future
evolution of tracking error from time k to k + Hp, i.e.,
E(k) = Z(k) − T (k) evaluated at time k.

This minimization problem is a quadratic programming
problem since it is in the form: minθ

1
2θT�θ + φTθ with

�θ ≤ ω. Moreover, this problem is convex, see ref. [26], i.e.,
the local minimum is also the global minimum. Therefore,
the optimal control sequence �W(k) over the control horizon
Hc can be calculated by setting to zero the gradient of V(k):

�W(k)opt = 1

2
H−1G. (29)

5. MPC Control: Numerical Results of Trajectory
Tracking in the Joints Space
In this section, the effectiveness of the proposed control
strategy for simultaneous path following and vibration
reduction will be demonstrated and discussed. This
evaluation is conducted trough extensive simulation, using
the MATLAB/Simulink environment. The effectiveness of
the MPC controller as a regulator has already been proven
in refs. [21, 22], but here, the focus moves from regulation
problem to tracking problem. Moreover, it should be pointed
out that the problem of position control in a multi-DOFs
system is nontrivial since a lack of synchronization between
the motion of the axis leads to severe worsening to the
accuracy. For this reason, a reference lookahead strategy has
been included in the predictive control, and the effective
improvement is shown. Effects of different choices for some
of the tuning parameters of the controller, namely, the two
horizons Hp and Hc, are investigated in terms of accuracy
of reference tracking and vibration damping by the means of
extensive sets of simulations. A list of the tuning parameters
of the implemented control can be found in Table III, while
the block diagram of the closed-loop control used for the
simulation is reported in Fig. 7.

Table III. MPC tuning parameters.

Symbol Description

Hp prediction horizon
Hc control horizon
Ts sampling time

wτ1, wτ2 weights on torques
wδτ1, wδτ2 weights on the change rate of torques
wu1 , wu18 weights on nodal displacements
wq1 , wq2 weights on angular position of the cranks

The capabilities of the MPC controller both in terms of
position tracking and vibration control have been tested using
two constant speed trajectories for q1 and q2. In these tests, the
mechanism performs two high-speed rotation of the first and
the fourth link: q1 rotates 45◦, while q2 rotates 30◦ in 500 ms.
As it can be seen in Fig. 8, the closed-loop system exhibits
optimal performances: the reference tracking is very good
and has almost no delay. The torques provided by the two
actuators are displayed in Fig. 9. In Fig. 8, it can be seen that
the closed-loop system damps very efficiently the vibration
that arises in the mechanism when the two angular positions
q1 and q2 have discontinuous velocities and accelerations.

5.1. Effects of the reference lookahead and control tuning
The promptness in reference tracking exhibited in Fig. 8 is
heavily influenced by the reference lookahead system used by
the MPC controller. As already stated in Eq. (18), the optimal
control sequence is calculated at every iteration in order to
minimize (also) the quadratic norm ‖Z(k) − T (K)‖. Such
a value is the quadratic norm of the tracking error E(k) =
Z(k) − T (K) in which Z(k) and T (k) are the evolution of
controlled outputs and the reference from actual time k to
k + Hp.

When reference lookahead is not implemented, the
future reference values are estimated simply by r(k + i) =
r(k) ∀i ∈ [1, Hp − 1], so T (k) = r(k), which is the exact
prediction only for constant or step-changing reference
signals. The enhancing in terms of reference tracking
obtainable with reference lookahead can be seen in Fig. 10:
the same test presented in Fig. 8 is here compared with the
results obtained without reference lookahead. It can be seen
that the adoption of a lookahead strategy reduces the delay
of the response. This effect is even more evident when the
change rate of the reference trajectory and the prediction
horizon are increased.

Optimization

Constraints

Fig. 7. Structure of the MPC controller.
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The tuning of the MPC controller is also influenced by the
values of the weights used in the minimization problem (see
Eq. 17) as the diagonal entries of matrices Q and R. These
weights are:
� wτ1 and wτ2 : weights on the two torques applied to the first

and the fourth link, respectively.
� wδτ1 and wδτ2 : weights on the change rate of the two torques

applied to the first and the fourth link, respectively.
� wu1 , wu18 : weights on the two controlled nodal

displacements u1 and u18, respectively.
� wq1 , wq2 : weights on the angular positions q1 and q2,

respectively.
Then, the behavior of the controller depends also on

the length of the two horizons: the prediction horizon Hp
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Fig. 12. Effects of different values of the control horizon Hc (Hp = 10): (a) angular displacement u1 along the first link; (b) angular
displacement u18 along the fourth link.

and the control horizon Hc. For all the tests conducted,
the sampling frequency is Ts = 1 ms. The tuning for
the test shown in Figs. 8–10 is as follows: wτ1 =
wτ2 = wδτ1 = wδτ2 = 0.1; wu1 = 3000, wu18 = 2000, wq1 =
4000, wq2 = 7000, Hp = 10, Hc = 5. It can be noticed in
Fig. 10(d) that the position tracking for q2 (with and without
lookahead) is less effective than the tracking of q1. This is
caused by the choice of the linearization point. In this case,
q2 is more sensitive than q1 to this approximation since the
sensibility coefficients for q2 are less linear than those of q1

along the considered trajectory. The same behavior can be
shown for q1 if the trajectories of the two joints are swapped.

5.2. Influence of the control horizon Hc on closed-loop
performance
In order to show how the choice of the control horizon
and the prediction horizon affects the closed-loop response,
extensive sets of simulations have been conducted. A few
results are displayed in Figs. 11 and 12 in which the effects
of altering only the length of the control horizon are reported.
From Fig. 11, it can be seen that altering the control horizon
has a limited effect on the reference tracking of the two
angular positions q1 and q2: with lower values of Hc, the
angular movement appears to be slightly less accurate. The
parameter Hc influences mainly the readiness of the system in
terms of vibration reduction: as can be inferred from Fig. 12,
the choice of higher values of the control horizon leads to

higher vibration peak but with a more fast damping. This
effect can be thought as a higher gain of the controller. Results
are shown with Hc up to 5 since further increase does lead to
little or no improvements.

5.3. Influence of the prediction horizon Hp on closed-loop
performance
In Figs. 13 and 14, the effects of altering the prediction
horizon Hp are shown. From those graphs, it can be inferred
that Hp influences mainly the damping performances of the
closed-loop system. From Fig. 13, the vibration of u1 and u18

requires more time to be damped when choosing shorter Hp.
At the same time, the reference tracking of q1 and q2 is more
accurate when Hp is higher. Here, the results are shown with
Hp up to 20 since it has been proven that the performance
enhancing is very slight when going beyond this threshold.

The previous observations can be summarized by the
graphs in Fig. 15, which report the results of several
simulations obtained by changing the values of the prediction
and control horizons. The tuning parameters of the MPC
control have been chosen as in Table IV. A large number
of tests have been conducted by performing the same tests
whose results are displayed in Figs. 10 and 11, but here,
the prediction horizon ranges from 3 to 20, and the control
horizon ranges from 1 to Hp since it makes no sense to
set Hp > Hc. All the values of the other parameters of the
controller are kept the same as the previous simulations.
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Fig. 13. Effects of different values of the prediction horizon Hp (Hc = 5): (a) angular displacement u1; (b) angular displacement u18.

For sake of simplicity, two indices have been defined, as
follows:

k1 = ‖�q(t)‖∞
k2 = ‖�q(t)‖∞ with t ∈ [0.9 s, 1 s]

(30)

being �q(t) the tracking error, i.e., �q(t) = ∥∥qD(t) − q(t)
∥∥

in which qD(t) = [q1D(t), q2D(t)] and q(t) = [q1(t), q2(t)]
are the desired and actual angular positions of the cranks,
respectively. The index k1 describes the infinity norm of the
quadratic error. Namely, it measures the error (evaluated in
the joint space) between the desired and the actual position

of the controlled cranks, while the index k2 is defined as
the infinity norm of the tracking error at the end of the test.
Therefore, it is closely related to the steady-state error. As it
can be inferred by comparing the two graphs, the value of
Hp affects in different ways the mentioned indices.

In Fig. 15(a), it can be seen that the maximum path error
can be minimized by choosing Hp = 14 and Hc > 4. It can
also be noticed that the maximum tracking error is highly
sensitive to the prediction horizon, as long as the ratio
between Hc and Hp is sufficiently high. In Fig. 15(b), the
value of performance index k2 is plotted versus Hp and Hc:
it can be seen that, in order to reduce the steady-state error,
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Fig. 14. Effects of different values of the prediction horizon Hp (Hc = 5): (a) angular position q1 of the first link; (b) angular position q2
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Table IV. Values of MPC tuning parameters.

Parameters Value

Hp 1–20
Hc 1 - Hp
Ts 1 kHz

wτ1, wτ2 0.1
wδτ1, wδτ2 0.1

wu1 3000
wu18 2000
wq1 4000
wq2 7000

Hp should be chosen to be 7. Again, Hc has less influence
than Hp on the performances of the closed-loop system when
position accuracy is the main concern.

5.4. Evaluation of robustness
Exhaustive numerical tests have been conduced to test the
robustness of the controller to mismatches between the plant
and its model used for prediction and observation. This
approach to robustness evaluation has been employed in other
papers.18, 22 Simulation results show that the MPC controller
can withstand severe plant-model parametric mismatches. In
Fig. 16, the response of the nominal plant is compared to the
response of two different mismatched plants. In the perturbed
plant, some fundamental parameters have been changed, such
as the elastic modulus E and the linear mass density m of the
links. Moreover, two uncorrelated noise signals have been
added to the torques. These two noisy disturbance act as
severe unmeasured noises since the state observer cannot
measure them. The simulation results plotted in Fig. (16)
refer to (1) plant with E and m reduced by 20%, uncorrelated
torque noise with PSD = 1 ×10−4; (2) plant with E and m

increased by 20%, uncorrelated torque noises with PSD = 1
×10−4; and (3) nominal plant.

The MPC controller shows a robust behavior: even when
noise is added, the response of the system has just a small
degradation of the performances, nevertheless the stability
as been preserved. The response in terms of angular position
tracking is not shown, since the difference in performance
from the nominal case is practically unnoticeable. As it is
evident in Fig. 16, the increased level of vibration is caused

solely by the torque disturbances since the reference tracking
of q1 and q2 has an almost undetectable degradation, and the
closed-loop system retains its stability. It should be pointed
out that the magnitudes of both the additive noises and the
parametric mismatches artificially added to the closed-loop
system are far beyond the unavoidable mismatches that arise
in typical experimental tests.

6. Numerical Investigation of End-Effector Trajectory
Tracking
In the previous sections, the effectiveness of the proposed
control strategy has been proved for tasks defined in the
joint space. Nevertheless, the manipulator tasks are defined,
in general, in the operational space. In such a space, the
control requirements become much stricter, since small and
negligible errors in joint position could cause large errors in
the end-effector position, owing to the kinematic structure
of the manipulator. In this section, a suitable test bench will
be carried out to prove the effectiveness of the proposed
control approach for a task defined in the operational space,
as well. The end effector (assumed to be fixed to the joint
C) should move from the position C0 (−100 mm, 460 mm)
toward position Cf (400 mm, 460 mm) following the straight
line that passes between the mentioned points (Fig. 17). The
movement must be executed in T = 1 s and the vibrations as
well as the position errors should be kept as small as possible.

The trajectory in the Cartesian space has been planned by
using a third degree polynomial function, whose coefficients
have been set by the constraints on the final and initial
positions and the related velocities (forced to zero). Figure 18
shows the resultant joints position, velocity, and acceleration
obtained through the inverse kinematic algorithm. It can be
observed that the desired motion of each controlled joint is
wider than 80◦. Therefore, the task looks to be heavy since
the movement has to be completed very quickly (T = 1 s).
In Fig. 19, four surfaces show the sensibility coefficients
wij end-effector C of the ERLS as a function of the rigid
coordinate’s values q1 and q2, defined by the following
equation:

Ċ = SC(q)q̇ =
[

w11 w12

w21 w22

]
(q1,q2)

[
q̇1

q̇2

]
. (31)
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The sensibility coefficients are used to evaluate the speed
of a generic point belonging to the manipulator form from
the speed of the free coordinates. The curves in black in
Fig. 19 show the wij values corresponding along the planned
trajectory. It can be seen that for the chosen trajectory the
sensibility coefficients vary rather slowly. This behavior

helps the effectiveness of the assumed linear observer, even
if the mechanism moves far away from the linearization
configuration.

Figure 18 proves the efficiency of suggested control
approach, by displaying the real versus planed trajectories,
while Fig. 20 shows the related u1 and u18 nodal
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Fig. 18. Actual qi and planned qiD trajectories: (a) positions, (b) velocities, and (c) acceleration.
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Fig. 19. Evolution of sensitivity coefficients for the end effector position along the planned trajectories: (a) w11; (b) w12; (c) w21; (d) w22.
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displacements and proves the MPC effectiveness in keeping
small the manipulator vibration. It can be shown that
both position and velocity trajectories are followed quite
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weights.
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Fig. 23. Effects of the interpolating function on the trajectory error.

accurately, while some discrepancies appear as far as the
acceleration signals are concerned. Figure 21 shows the end-
effector tracking error that the manipulator makes while

http://journals.cambridge.org:8080


http://journals.cambridge.org Downloaded: 26 Oct 2011 IP address: 142.58.162.35

14 Design of a controller for trajectory tracking for compliant mechanisms

0 0.5 1 1.5
−1000

−500

0

500

1000

Time (s)

∂
2
q 1

D
/∂

t2
 (

d
e

g
/s

2
)

∂
2
q 2

D
/∂

t2
 (

d
e

g
/s

2
)

Third

Fifth

Seventh

0 0.5 1 1.5
−1000

−500

0

500

1000

Time (s)

(a) (b)

Third

Fifth

Seventh

Fig. 24. (a) Velocities and (b) acceleration of q1 and q2 with third-, fifth-, and seventh-order interpolation functions.

following the trajectory. It can be shown that the latter is
always less than 0.6 mm for T = 1 s. It increases up to the
middle region of the desired trajectory and decreases toward
the final position. This behavior can be easily explained if the
controller behavior, which tends to slow down any velocity
change, so as to reduce the vibration amplitude, is considered.
Therefore, the MPC smooths the trajectories and delays the
trajectory following.

The controller effects on vibration minimization become
more comprehensible by looking at Figs. 21 and 22. Figure 21
displays the tracking error when the task is executed in a
shorter time. Since, in this case, changes in velocity and
acceleration are greater than in the previous simulation, the
MPC controller delays much more the path following. On
the other hand, Fig. 22 shows what happens if the MPC
weights on the vibration amplitude are changed. It can be
seen that by augmenting the weights on the deformations, a
clear degrading effect occurs on the end-effector accuracy.
Therefore, much attention must be paid in selecting the MPC
weights: the behavior of the overall mechanism strongly
depends on their values and a suitable trade-off between
the requirements on trajectory error and vibration reduction
must be found.

Figure 23 shows the effects of different choices on the
interpolating function. It is well known that for a compliant
mechanism, discontinuities on the reference trajectory should
be limited to derivatives of the highest order and, in
any case, these should be kept as small as possible.
Figure 24 seems to contradict this guideline: increasing
the interpolating function order (therefore, reducing the
discontinuities to the highest order derivatives) decreases the
controller performances. This behavior might be interpreted
by considering that any increment of the interpolating
function order increases the maximum values of the velocities
and acceleration increase as well. Therefore, it requires a
heavier controller action, which raises the delay on the path
following.

7. Conclusions
This paper has presented an investigation of a model
predictive control system for a flexible-link mechanisms
with multiple actuators. The aim of the presented solution
is to control both the position and the elastic displacement

of the plant. The design of the controller is based on a
very accurate linearized dynamic model. The performance in
terms of trajectory tracking is evaluated for tasks defined both
in the joints space and the operational space. The effects of
choosing different trajectory planning algorithms for point-
to-point motion in the operational space are investigated as
well. It has been proved that the control system is very
effective in both trajectory tracking and vibration suppression
even in high-speed and extensive movement range task, and
it is robust to both parametric mismatches between the actual
and the modeled plant and to unmeasured input disturbances.
The experimental tests are currently under development. The
authors are working on a real-time implementation of the
control system shown in this paper. Results will be available
as soon as the problem caused by the hardware of choice will
be solved.
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