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Abstract

This paper deals with the model-based development of optimal jerk-
limited point-to-point trajectories for flexible-link robotic manipulators. In
the proposed approach, an open-loop optimal control strategy is applied
to an accurate dynamic model of flexible multi-body planar mechanisms.
The model, which has already been fully validated through experimental
tests, is based on finite element discretization and accounts for the main
geometric and inertial nolinearities of the linkage. Exploiting an indirect
variational solution method, the necessary optimality conditions deriving
from the Pontryagin’s minimum principle are imposed, and lead to a differ-
ential Two-Point Boundary Value Problem (TPBVP); numerical solution
of the latter is accomplished by means of collocation techniques. The re-
sulting motion and control profiles can be used as feedforward reference
signals for a position and vibration control. Considering a lightweight RR
robot, simulation results are provided for rest-to-rest, jerk-limited trajec-
tories with minimum actuator jerks and vibrations. However, the strategy
under investigation has general validity and can be applied to other types
of mechanisms, as well as with different objective functions and boundary
conditions. Numerical evidence clearly indicates that the use of a composite
cost functional and the imposition of jerk constraints can greatly reduce vi-
bration phenomena during high-speed motion of flexible-link manipulators.

1 Introduction

High speed operation is a recurring target in design and application of robotic
manipulators, for clear economic reasons. Also maximizing the ratio between the
weight of the payload and that of the whole mechanism is a common objective.
Traditionally, to ensure a good position accuracy of manipulators, their arms have
been designed and built so as to behave like rigid bodies. Hence, conventional
robots still present heavy links and bulky structures. However, such systems
are shown to be inefficient in terms of actuator power consumption and speed,
related to their load-carrying capacity [1], as payload-to-manipulator weight ratio
is typically ranging from 1:100 to 1:10 [2].

On the other hand, a common trend of robot design is to develop lightweight
mechanisms also for industrial applications, not only for weight-critical tasks
such as outer space explorations. Lighter robots exhibit several advantages over
heavy rigid ones, such as lower cost, improved energy efficiency and safety, higher
operating speed and payload-to arm weight ratio. Despite this, lower arm stiffness
generates flexibility and vibration issues. In these cases, dynamic analysis and
control strategies based on the rigid-link assumption turn out to be no longer
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adequate: structural flexibility, if neglected or poorly controlled, can lead to
major worsening in the accuracy of positioning and motion, to high mechanical
stress, and also to instability.

During the last 30 years, large efforts have been made in both academic and
industrial settings, to offer solutions to the aforementioned problems. Several
approaches have been explored, focusing on the main tasks of dynamic modeling,
control and trajectory planning of Flexible-Link Manipulators (FLM) [1].

FLMs are continuous nonlinear dynamical systems, possessing an infinite num-
ber of elastic degrees of freedom. A crucial aspect is thus represented by the
strategy adopted to obtain a finite-dimensional approximation of their dynamics.
The main existing approaches are Assumed Mode Method (AMM) and Finite
Element Method (FEM), commonly used in combination with the Lagrangian
or the recursive Newton-Euler formulations for deriving the system equations of
motion. Lumped Parameter modeling, i.e. approximation by means of spring-
mass systems, is rarely chosen [3] due to its limited accuracy. If linearized models
around a specified operating point are taken into consideration, as done in [4],
the dynamics of multi-link FLM is described with limited accuracy: as proved ex-
perimentally by Milford and Asokanthan in [5], the eigenfrequencies of a two-link
flexible robot can vary up to 30% as a function of the manipulator configura-
tion. Moreover, numerical and experimental studies [6, 7] have demonstrated
that an accurate dynamic modeling of FLMs must consider both the coupling
between rigid-body and elastic motions and the main geometric and inertial non-
linearities. In Assumed-Mode Method, only a set of eigenfrequencies are used to
describe the flexible behaviour of the manipulators, along their whole operative
range [3, 8, 9]. FEM formulation is reputed to be more accurate than the AMM
in describing flexible multi-link manipulator dynamics, and arms with complex
cross-sectional geometries too, as reported by Theodore and Ghosal in [3]. In
addition, Lee showed in [10] that conventional Lagrangian modeling of FLMs is
not very accurate, in case of rotational motion of the links.

This work concerns the developement of point-to-point optimal path plan-
ning algorithms, for planar mechanisms with flexible arms. An highly accurate
nonlinear dynamic model of FLMs, based on finite element discretization and
Equivalent Rigid-Link System (ERLS) formulation, is used. Global differential
equations of motion are obtained by direct application of the principle of vir-
tual work, and they account for the mutual inertial influence between elastic and
rigid-body motion [11].

In point-to-point trajectory optimization problems, only the initial and final
end-effector positions are given, and the manipulator is free to move between
them. The path is therefore subject to optimization, and it is selected with the
aim of minimizing a cost functional. Such cost may depend on execution time,
actuator effort, jerks (or torque rates), or a combination of these variables. Mini-
mizing actuator jerks, or keeping them bounded, can produce several advantages,
such as the reduction of stress induced on actuators and on mechanical structures,
and limited excitation of resonance frequencies. Moreover, a very coordinated and
natural motion is yielded [12].

The topic of model-based optimal trajectory planning of flexible-link mecha-
nisms is somehow limited, while a large number of strategies has been developed
for rigid manipulators [13, 14], also considering the jerk-optimal case [15, 16, 17].
Furthermore, several authors have studied optimal trajectories for robots with
mobile bases [18] and/or with flexible joints [19, 20], just to cite a few exam-
ples. An interesting approach is also the development of non-time based control
strategies, that act as a reference filter, as proposed and tested in [21, 22].
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As for the optimal control of flexible-link mechanisms, the feedforward tech-
niques used in this paper do not require any additional sensors. They are thus
more economical then closed-loop strategies, for vibration control of robotic ma-
nipulators performing repetitive tasks [23]. Moreover, their off-line nature al-
lows overcoming many difficulties, such as highly nonlinear dynamics, and system
or actuation constraints. The approaches for solving open-loop optimal control
problems can be broadly classified into two main categories: direct and indirect
methods.

In direct methods, the original optimal control problem is converted into a
parameter optimization one [24], by discretizing robot dynamic variables (states
and/or controls). Then, an efficient deterministic or stochastic optimization al-
gorithm can be applied to solve this new finite-dimensional problem. In [25] and
[26], residual vibration reduction is attained approximating the joint motion pro-
files with splines or polynomial functions, respectively for a two-link rigid-flexible
manipulator and a flexible-link, flexible-joint one. A similar approach is proposed
in [27], in which optimal rest-to-rest motion for a two-flexible-link robot is eval-
uated, using genetic algoritms and polynomial functions. As in most direct ap-
proaches to model-based trajectory optimization, dynamic modeling is obtained
through the Assumed-Mode Method. An exception is represented by [28]: Fi-
nite Element Method is applied to a flexible RR manipulator, in combination
with a Genetic Algorithm–fuzzy logic feedback control strategy. Also in [2, 29], a
FEM-based modeling for a two-link flexible manipulator is employed: but in this
case, an open-loop discrete dynamic programming (DDP) path-planning scheme
is proposed. Numerical simulation are perfomed for minimum effort, minimum
effort with bounds, minimum time, and minimum torque-rate trajectories. How-
ever, Dynamic Programming severely suffers from Bellman’s curse of dimension-
ality [30] and is therefore restricted to systems with low-dimensional state spaces.
Moreover, as a result of the control parametrization introduced, all direct meth-
ods can only yield approximate solutions to the optimal control problem. Due to
the large number of parameters involved, they are extremely time-consuming and
quite inefficient, especially for systems with a large number of elastic d.o.f. [31].

On the other hand, indirect methods make use of calculus of variation: neces-
sary conditions for optimality deriving from the Pontryagin’s Minimum Principle
(PMP) are imposed, and the resulting Two-Point Boundary Value Problem (TP-
BVP) is solved, by suitable numerical techniques. Indirect methods are widely
reckoned to be very accurate, particularly when a large number of elastic d.o.f. is
present, or optimization of composite objectives is targeted [32]. In [31], Korayem
et al. have developed an algorithm for the point-to-point motion planning of a
two-link FLM with revolute joints. Euler-Lagrange formulation and Assumed-
Mode Method are used to describe the dynamics of the robot. The cases of min-
imum effort, minimum effort-speed, maximum payload and minimum vibration
are examined; only constraints on joint actuator torques are imposed.

To the best of the authors’ knowledge, the only paper applying both FEM-
based dynamic modeling and indirect solution methods to the open-loop optimal
control problem of FLMs is [33], again by Korayem et al. In it, however, La-
grangian formulation is used to define the robot dynamics, and results are pro-
vided only for time evolution of joint speeds and motor torques. Therefore, no
results in terms of vibration are presented. Moreover, only minimum effort-speed
trajectories are investigated.

In this paper an indirect strategy is developed for the optimal path planning
of flexible multi-link manipulators. They minimization of two different objec-
tive functions – namely, the time integral of the squared actuator jerks, and a
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composite cost functional – is considered.
Constraints on control actions – i.e., actuator jerks – are introduced as well,

and it will be shown that this feature can further reduce the level of vibration
observed during the robot motion. Although only rest-to-rest tasks have been
taken into consideration here, the strategy presented here can also be adapted to
the most general case of nonzero intial and final conditions, and even to multiple-
waypoint trajectory planning. The latter case would require the use of Multi-
Point Boundary Value Problem, instead of just a Two-Point BVP.

2 Dynamic modelling

In this section a brief explanation of the dynamic model used for the definition
of the trajectory planning problem is given. Such formulation, introduced by
Giovagnoni in [11], is based on FEM discretization and on the principle of virtual
works. The resulting model, whose high accuracy has been proved in several
papers [34, 35, 36], accounts for the inertial non-linearities of the mechanisms
and gives a coupled description of both the rigid and flexible motion of a planar
FLM with an arbitrary number of links.

First, each flexible link belonging to the mechanism is divided into finite el-
ements. Referring to Figure 1 the following vectors, calculated in the global
reference frame {X,Y,Z}, can be defined:

• ri and ui are the vectors of nodal position and nodal displacement of the
ith element of the ERLS

• pi is the position of a generic point inside the ith element

• q is the vector of generalized coordinates of the Equvalent Rigid-Link Sys-
tem (ERLS)

The vector of positions bi is linked to ri and ui trough:

bi = ri + ui (1)

since the motion of the nodes of each elastic element is evaluated as the su-
perimposition of the rigid and of the elastic motion. In the same way, also the
following vectors can be defined:

• wi is the vector that measures the position of a generic point belonging to
the ERLS

• vi is the vector of the displacement of the point to whichwi refers, measured
from the ERLS

• pi is the vector obtained as:

pi = wi + vi (2)

xi and yi are the vectors that define the local reference frame which rotates
with the i-th element of the ERLS. ERLS formulation, which has been introduced
in [37], is used here to give a fully coupled description of the dynamics of the global
coordinates vector q and of the vector of nodal displacements u. The vectors
defined so far are calculated in the global reference frame {X,Y,Z}. Applying
the principle of virtual work:

4



P. Boscariol, A. Gasparetto
Model-based trajectory planning for flexible-link mechanisms with bounded jerk
Robotics and Computer Integrated Manufacturing 29(4), pp.90-99, 2013

Figure 1: Kinematic definitions of the ERLS

δW elastic + δW inertial + δW external = 0 (3)

the following relation can be stated:

∑

i

∫

Vi

δpi
T p̈iρidw +

∑

i

∫

Vi

δǫi
TDiǫidw =

∑

i

∫

Vi

δpi
Tgρdw + (δuT + δrT )F (4)

where ǫi, Di, ρi and δǫi are, respectively, the strain vector, the stress-strain
matrix, the mass density of the ith link and the virtual strains. F is the vector
of the external forces, including gravity, whose acceleration vector is g. Eq. (4)
shows the virtual works of, respecitvely, inertia, elastic an external forces. From
this equation, pi and p̈i for a generic point in the ith element are:

δpi = RiNiTiδri
p̈i = RiNiTi + 2(ṘiNiTi +RiNiṪi)u̇i

(5)

where Ti is a matrix that describes the transformation from global-to-local
reference frame of the ith element, Ri is the local-to-global rotation matrix and
Ni is the shape function matrix. Taking Bi(xi, yi, zi) as the strain-displacement
matrix, the following relation holds:

ǫi = BiTiδui

δǫi = BiδTiui +BiTiδui
(6)

Since nodal elastic virtual displacements (δu) and nodal virtual displacements
of the ERLS (δr) are independent from each other, from the relations reported
above the resulting equation describing the motion of the system is:

[

M MS

STM STMS

] [

ü

q̈

]

=

[

f

ST f

]

(7)

M is the mass matrix of the whole system and S is the sensitivity matrix for all
the nodes. Isoparametric elements are used here, as in [38]. Vector f = f(u, u̇,q, q̇)
takes account of all the forces affecting the system, including the gravity force.
Adding a Rayleigh damping, right-hand side of Eq. (7) becomes:

[

f

ST

]

=

[

−2MG − αM − βK −MṠ −K

ST (−2MG − αM) −STMṠ 0

]





u̇

q̇

u





+

[

M I

STM ST

] [

g

F

]

(8)
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Matrix MG accounts for the Coriolis contribution, while K is the stiffness
matrix of the whole system. α and β are the two Rayleigh damping coefficients.
The system in eq. (7) can be made solvable by forcing to zero as many elastic
displacement as the generalized coordinates, in this way ERLS position is defined
univocally. So removing the displacement forced to zero from eq. (7) gives:

[

Min (MS)in
(STM)in STMS

] [

üin

q̈

]

=

[

fin

ST f

]

(9)

In this way, the values of the accelerations can be computed at each step
by solving the system in (9), while the values of velocities and of displacements
can be obtained by an appropriate integration scheme (e.g. the Runge-Kutta
algorithm). It is important to focus the attention on the size and the rank of
the matrices involved, and also to the choice of the general coordinates used in
the ERLS definition. Otherwise it might happen that a singular configuration is
encountered during the motion of the mechanism. In this case eq. (9) cannot be
solved.

In order to define correctly the minimization problem that is used to evaluate
an optimal motion profile, the direct dynamics of the flexible-link manipulator
under consideration must be computed in its symbolic form. The reason of this
need will be explained in the following section. Equation (9) can be rewritten

by making explicit the state vector x = [u̇, q̇,u,q]
T
and its time derivative, i.e.

reducing the order of the ODE system in (9):









M MS 0 0

STM STMS 0 0
0 0 I 0
0 0 0 I

















ü

q̈

u̇

q̇









=









M I

STM ST

0 0
0 0









[

g

F

]

+









−2MG − αM − βK −MṠ −K 0

−ST (2MG + αM) −STMṠ 0 0
I 0 0 0
0 I 0 0

















u̇

q̇

u

q









(10)

or, in a more compact form:

M̃ẋ = Φ(x,F, t) (11)

where:

M̃(x, t) =









M MS 0 0

STMS STMS 0 0
0 0 I 0
0 0 0 I









and

Φ(x,F, t) =









M I

STM ST

0 0
0 0









[

g

F

]

+









−2MG − αM− βK −MṠ −K 0

ST (−2MG − αM) −STMṠ 0 0
I 0 0 0
0 I 0 0









x

The direct dynamics of the manipulator is the first order ODE system:

ẋ = M̃(x, t)
−1

Φ(x,F, t) (12)
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which must be computed in its symbolic explicit form. In order to do this, a
symbolic algebraic tool must be used. In this case all the computation has been
done using Matlab Symbolic Toolbox. The mechanism under consideration in
this paper is not affected by gravity, therfore the gravitational term g in equation
(10) is null. Moreover, if only rotary actuators are used, the vector of generalized
forces F includes only torques and null terms. If τi is the torque produced by
the i-th actuator and τ is the vector containing all the τi, F is simply F = F(τ).
Therefore equation (12) can be rewritten as:

ẋ = M̃(x, t)
−1

Φ(x, τ, t) = Ω(x, τ, t) (13)

Equation (13) can be rearranged to explicitely take into account the motor jerk
γ, defined as the time derivative of the motor torque: γ = τ̇ . A new augmented
state vector can be defined as:

x′ =

[

x

τ

]

(14)

therefore a new formuation of eq. (13) can be written by a simple algebraic
manipulation as:

ẋ′ = M′(x′, t)−1Φ′(x′, γ, t) = Ω′(x′, γ, t) (15)

in which the explicit dependance of Φ′ by torque τ is hidden and its role as
the input variable has been taken by the actuator jerk γ.

3 Formulation of jerk-bounded motion planning

problem

The target of this study is to find a way to compute a trajectory that brings the
plant form a given initial condition x(t0) = b0 to the final configuration x(tf ) =
bf in a given time. Among the infinite number of choices, the motion profile that
we are looking for is the solution of the following optimization problem:







































min
γi

J =
tf
∫

t0

f(x′(t), γi, t)dt+ Z(x′(t), γf , tf)

subject to :
ẋ′(t) = Ω′(x′(t), t, γi)
Γ− ≤ γi ≤ Γ+

x(t0) = b0

x(tf ) = bf

(16)

f is a smooth differential function of the state variable x and of the control
vector τ , while Z is a function of the system at terminal time, therefore is often
referred as the terminal cost. Given the choice of the cost function J , the above
problem is a Bolza problem. Since the problem is constrained by the nonlinear
dynamic system Ω′(x(t), t, γi) which represents the dynamics of the manipulator,
the problem above is a nonlinear constrained optimization problem. One of the
ways to solve it is to formulate a TPBVP (Two-Point Boundary Value Prob-
lem) trough the use of Pontryagin Minimum Principle (PMP) [39] and Hamilton-
Jacobi-Bellman (HJB) equation. A good source of material on the calculus of
variation and on the application of HJB equation and PMP can be found in the
classic book [40]. A book more focused on practical applications is [41], which
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covers also some basic numerical techniques often used for solving this class of
problems.

The first step is to define the Hamiltonian, i.e. a function in the form:

H(x′(t), t, γ) = J + ΛTΩ′(x′(t), t, γ) (17)

where Λ is the vector of Lagrangian multipliers:

Λ = [λ1, λ2, . . . , λn]
T

whose length is n, which equals the size of the state of the plant: x(t) ∈ R
n. Λ

is also often called costate vector . Pontryagin Minimum Principle [39] states that
the necessary conditions to obtain a solution to the problem stated in equation
(16) are:

ẋ =
∂H

∂Λ
(18)

Λ̇ = −
∂H

∂x
(19)

0 =
∂H

∂γ
(20)

If constraints are present on the control vector γ, also the following must be
taken into account:

γ =







Γ+ for γ ≥ Γ+

γ∗ for Γ− ≤ γ ≤ Γ+

Γ− for γ ≤ Γ−

(21)

being γ∗ the optimal control resulting from the equation (20). Among the
infinite state trajectory that satisfy the conditions stated above, our goal is to
choose the ones that respect the two boundary conditions at initial and final time
t0 and tf . In general, such conditions can be posed on the so called augmented
state, i.e. y(t) = [x(t),Λ(t)], but in most cased such conditions are posed on
the sole state vector of the plant x(t), since they have a straightforward physical
meaning.

4 Reference mechanism

The mechanism taken as the testbench is a two-link planar RR manipulator with
thin and long links. Actuation is provided by two torque controlled motors. The
kinematic and dynamic characteristics of the manipulator are reported in Table
1. Link weight and flexural inertia are evaluated by choosing alluminum as the
material of the links. Each link has a square section 1 cm wide, and the length of
both links is 50 cm. Therefore the mass of each link is around 130 g. The weight
of actuators and of end-effector tool are included by using concentrated masses
at the nodes of the mechanism.

Each flexible link has been represented by a single finite element, using 6 d.o.f.
Euler-Bernoulli elements. The rigid displacements q1 and q2 and the six elastic
displacements u1, u2 . . .u6 are shown in Figure 2.
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symbol value
Young’s modulus E 70 ×109 Pa
Flexural inertia moment J 8.333 ×10−10 m4

Beam width and thickness a 10 mm
Length of first link L1 0.5 m
Length of second link L2 0.5 m
Mass/unit of length of links m 0.27 kg/m
Concentrated mass at second joint m1 0.54 kg
Concentrared mass at the end-effector m2 0.2 kg
Rayleigh damping constants α 7× 10−2 s−1

β 2.1× 10−5 s

Table 1: Kinematic and dynamic characteristics of the manipulator

Figure 2: Two link manipulator: rigid and elastic displacements

5 Numerical results

The TPBVP problem stated in eq. (16) can be efficiently solved using the collo-
cation method [41] Matlab routine ”bvp4c” has proved to be quite efficient for the
task, therefore it has been used to obtain all the results presented in this work.
The formulation of the problem requires some symbolical computations that will
be briefly summirized here. First of all, an explicit form of the direct dynamics
of the manipulator must be available as a vector with 18 rows:

Ω′(x′(t), γ, t) (22)

and the augmented state vector:

x′(t) = [u̇1, u̇2, . . . , u̇6, q̇1, q̇2, u1, u2, . . . , u6, q1, q2, τ1, τ2]
T (23)

The control vector is u = [γ1, γ2]
T . The cost function of choice is:

f = uTRu+ x′TQx′ (24)

where R is a 2× 2 matrix that weigth the value of the control input (i.e. the
actuator jerks), whileQ is a 18×18 matrix that penalizes the various entries of the
augmented state vector x′. R and Q have been chosen to be diagonal matrices:
this choice makes the cost function J to be quadratic. The Hamiltonian already
expressed in (17) can be evalued in its sybolic form once the costate vector is
defined:

Λ = [λ1, λ2, . . . , λ18]
T (25)
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Λ has 18 entries, i.e. has the same size of the augmented state vector ẋ′. Once
the Hamiltonian is computed, the new ODE system can be computed:

ẏ =











∂H

∂Λ

−
∂H

∂x′











(26)

Then the optimal control can be computed using eq. (20) solving it for the
motor jerks γ1 and γ2. The optimal controls are referred as: γ1

∗ and γ2
∗. Such

expressions can be subtituted into (26) leading to:

ẏ∗ =











∂H∗(x′,Λ, γ1
∗, γ2

∗)

∂Λ

−
∂H∗(x′,Λ, γ1

∗, γ2
∗)

∂x′











(27)

Now a suitable set of boundary values must be chosen to complete the def-
inition of a Two-Point Boundary Value Problem. The numerical method used
in this paper, i.e. the collocation method, require for the number of boundary
conditions to be equal to the number of entries of the ODE system in eq. (27),
which is 36. Therefore we impose 18 bounday conditions on the state variables at
t = 0 and 18 boundary conditions at final time t = tf . All the bounday conditions
are null, with the exception of the initial and final rigid displacments q1 and q2.
In this way we obtain a rest-to-rest motion with null initial and final displace-
ments, and moreover also their time derivative will be equal to zero, as well as
null velocity at the joints. The values of q1(0), q2(0), q1(tf ) and q2(tf ) have been
computed using a kinematic inversion algorithm from the intial and final positions
of the end-effector. For all the test reported in this section, the initial and final
position of the end effector measured in the X,Y plane are (0,−1) and (0, 0.5),
respectively. In this way a large displacement of the two links is performed in 1
second.

5.1 Minimum jerk problem

The first test case involves the planning of a minimum jerk trajectory. Therefore
the cost function of choice is:

J =

tf
∫

t0

γTRγdt (28)

being γ = [γ1, γ2]
T the vector of motor jerk, and R a diagonal matrix of

weights. In this way the optimization procedure produces a trajectory with mini-
mum integral of the quadratic norm of the jerk along the whole trajectory. More-
over the resulting trajectory is smooth, meaning that there are no discontinuities
in the jerk profiles. Literature on trajectory planning has in many cases high-
lighted the worsening on motion accuracy and the increased level of vibration on
the end effector caused by high level of acceleration and jerk as in [42, 43, 44, 45].
In particular Zefran et. al. in [46] shows that smooth trajectories (i.e. trajecto-
ries without jerk discontinuities) are to be preferred to comply with the physical
limitation of the actuators and with the limits of the control system bandwidth,
and that non-smooth motion can excite the structural natural frequencies of the
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system. Another example that uses minimum integral of jerk for planning smooth
trajectories is [47]. All the results presented in Figures (3-10) refer to the case in

which R =

[

1 0
0 1

]

. Figure 3 shows the trajectory of the end-effector during the

motion. The end-effector of the manipulator moves form point A to point B. The
position of each link is showed every 50 ms. Motor toques and jerk are shown in
Figure (4) and (5), respectively. The anlysis of such data shows that the torque
profiles are very smooth, and that the jerk values, while being quite high at the
start and end point, are continuous. The angular position of the links, measured
in the global reference frame X,Y somehow resemble two sigmoid functions, as it
can be seen in Figure (6). In order to evaluate the level of vibration induced on
the structure of the manipulator, the time evolution of the two link curvatures
are reported in Figures (7 8) for clarity, instead of showing the nodal displace-
ments, which have a less straightforward physical interpretation. Taking into
consideration the i-th link of the kinematic chain, its curvature can be calculated
as:

Ci = Hiui (29)

being ui the vector of 6 nodal displacements, and Hi a matrix of coefficients
evaluated as:

Hi = Bi(xi, yi)Ti(qi) (30)

Ti(q) is the global-to-local transformation matrix already introduced in (5),
while Bi(xi, yi) is the strain-displacement matrix also introduced in eq. (6). xi

and yi are the coordinates of the local reference frame at which the curvature
is calculated. Another reason for the use of curvature, is that it can be directly
measured using a strain gauge bridge. Analysis of Figures (7,8) shows that the
elastic displacement of the link is quite limited, considered the high flexibility of
the structure and the speed of motion achieved. A more detailed information can
be obtained trough the spectral analysis of this signals. Figures 9 and 10, which
plots the Fast Fourier Transform (FFT) of the curvature signal, shows that the
principal vibration components, located at 67 Hz for the first link and at 66 Hz
for the second link, have a low peak amplitude, i.e. -76.89 dB and -78.19 dB
respectively. Higher frequency modes have and even smaller amplitudes, being
lower than 100 dB. As it will be shown in the following section, this good results
can be even improved by using a more sophisticated cost funcion an by including
jerk constraints in the otpimization problem.

5.2 Composite cost function problem with constrained jerk

The second test case takes into consideration the same manipulator and the same
task used for the previous results. The difference here is that the cost function J is
now composite, since it takes into consideration also weights on motor torques, on
nodal displacements, on their time derivative, on rigid displacments and on joint
speed. Therefore the problem in equation (16) uses the following cost function J :

J =

tf
∫

t0

(

γTRγ + τTQτ τ + uTQuu+ u̇TQu̇u̇+ qTQqq+ q̇TQq̇q̇
)

dt (31)

Since all the weigthing matrices in equation (31) are diagonal, the optimiza-
tion problem is stilll quadratic. The complexity of the cost function allows to
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Figure 3: Trajectory of the end-effector in the operative space: min jerk solution

precisely tailor the resulting trajectory. Each weighting matrix allows to penalize
large values of all the components of the state variable x′: matrix Qq keeps undel
control large variations of the angular position of the links. Similar effects on
elastic deformations, joint speeds and torques are induced by setting high values
on Qu, Qq̇ and Qτ respectively. Of particular interest is the use of the weighting
matrix Qu̇: its role is to penalize the drivative of the nodal elastic displacement,
i.e. it can significantly reduce the high-order harmonic content of elastic defor-
mations. The results presented in this section include both an unconstrained and
a constrained problem. For the latter, the motor jerk is limited to the range ±10
Nm/s. The weighting matrices used for the two tests cases presented here are:

R =

[

5 0
0 5

]

Qτ =

[

1 0
0 1

]

Qq =

[

1 0
0 1

]

Qq̇ =

[

5 0
0 5

]

Qu =

















5 0 0 0 0 0
0 5 0 0 0 0
0 0 5 0 0 0
0 0 0 5 0 0
0 0 0 0 5 0
0 0 0 0 0 5

















Qu̇ =

















12 0 0 0 0 0
0 12 0 0 0 0
0 0 12 0 0 0
0 0 0 12 0 0
0 0 0 0 12 0
0 0 0 0 0 12

















Figure 11 shows the trajectory of the end-effector, while Figure 14 shows
the evolutions of the two angular positions, including both the constrained and
unconstrained solutions. A simple analysis of the two figures shows that the two
trajectory are quite similar, but the unconstrained solution has a slight oscillation
on the q2 profile which is less prominent in the constrained jerk case. Angular
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Figure 4: Motor torques: min jerk solution
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Figure 5: Jerk profiles: min jerk solution. j1 and j2 are the jerk for the first and
second joint

position q1 is actually not influenced by the jerk constraint. Motor torques are
displayed in Figure 12: here it is evident that the torque profiles are again similar
in the constrained and unconstrained cases, but the introduction of the constraint
on jerk has the influence of increasing the peak value of torque τ1. Jerk profiles
are displayed in Figure 13: here it can be seen that the unconstrained solution has
torques as high as 27 and 50 Nm/s for the first and second motor, respectively,
while the constrained solution limits them in the ±10Nm/s range. The limitation
happens mostly during the intial and final phases of motion, i.e. the most criticial
phases for the development of a damped response. Elastic displacements are
shown in Figure (15 and 16) as link curvatures. Here it is visible that the use of
jerk constraints improves by a large amount the amplitude of vibration, whose
peak values are roughly halved for both links. The frequency spectrum of these
signals are displayed in Figures (17, 18): from the analysis of plots it can be ssen
that there is a reduction in the peak value located around 67 Hz for both links of
roughly 10 dB. A comparison of the peak amplitudes of the frequency spectrum of
link curvatures is reported in Table 3. This modal component is the only actually
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Figure 6: Joint position profiles: min jerk solution. q1 and q2 are the angualr
positions of the first and second joint, respectively
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Figure 7: Curvature at the mdispan of the fisrt link: min jerk solution

significant one in the frequency spectrum, meaning that higher oder modes are
basically not excited by the motion profile.

Peak value of jerk and torque for the three test cases developed in this work
are shown in table 2.
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Figure 8: Curvature at the mdispan of the second link: min jerk solution
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Figure 9: Frequency spectrum of the curvature the mdispan of the first link: min
jerk solution
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Figure 10: Frequency spectrum of the curvature the mdispan of the second link:
min jerk solution
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Figure 11: Trajectory of the end-effector in the operative space: constrained and
unconstrained (*) solutions

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4

time  [s]

to
rq

ue
s 

 [N
m

]

 

 
τ

1

τ
2

τ
1
*

τ
2
*

Figure 12: Motor torques: constrained and unconstrained (*) solution

peak torque [Nm] MJ CCF CONSTR

τ1 3.431 3.429 3.498
τ2 1.04 0.7412 1.04

peak jerk [Nm/s] MJ CCF CONSTR

j1 55.76 55.76 10
j2 27.35 27.35 10

Table 2: Comparison of results: min jerk (MJ) solution, composite cost function
(CCF), constrained jerk solution (CONSTR)

16



P. Boscariol, A. Gasparetto
Model-based trajectory planning for flexible-link mechanisms with bounded jerk
Robotics and Computer Integrated Manufacturing 29(4), pp.90-99, 2013

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

10

20

30

40

time  [s]

je
rk

  [
N

m
/s

]

 

 

j
1

j
2

j
1
*

j
2
*

Figure 13: Jerk profiles: constrained and unconstrained (*). j1 and j2 are the
jerks for the first and second joint, respectively
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Figure 14: Joint position profiles: constrained and unconstrained (*) solution. q1
and q2 are the angular position of the first and second joint,respectively

First link

MJ CCF CONSTR Frequency

-76.80 -80.88 -90.8 67 Hz
-107.2 -115 -125 105 Hz
-116.8 -116.8 -122.9 290 Hz

Second link
MJ CCF CONSTR Frequency

-78.319 -78.19 -88.78 66 Hz
-91.26 -91.26 -113.5 97 Hz
-116.8 -116.8 -122.8 290 Hz

Table 3: Comparison of results as peak values of spectral components of link cur-
vature [dB]: min jerk (MJ) solution, composite cost function (CCF), constrained
jerk solution (CONSTR)
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Figure 15: Curvature at the mdispan of the fisrt link: constrained and uncon-
strained solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

time  [s]

se
co

nd
 li

nk
 c

ur
va

tu
re

  [
1/

m
]

 

 
constrained
unconstrained

Figure 16: Curvature at the mdispan of the second link: constrained and uncon-
strained solution
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Figure 17: Frequency spectrum of the curvature the mdispan of the first link:
constrained and unconstrained solution
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Figure 18: Frequency spectrum of the curvature the mdispan of the second link:
constrained and unconstrained solution
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6 Conclusion

In this paper the problem of planning of jerk-constrained trajectory for flexible-
links mechanisms has been investigated. Unlike most of the available literature on
the subject, dynamic modelling of FLMs is achieved trough the use of a nonlineare
FEM-based approach, for maximum accuracy. The optimization problem is set as
a nonlinear constrained optimization problem, which is translated into a two-point
boundary value problem and solved numerically. Jerk optimal and composite
cost optimal with bounded jerk solution are achieved by a redefinition of the
ODE system that represents the dynamics of the system. The capability of the
proposed approach is tested here, by showing that the use of constraints on the
computation of jerk profiles and the use of a complex composite function can lead
to the determination of trajectories with very limited vibrational phenomena. The
testbench is an RR mechanisms (i.e. a robot with two revolute joints) with flexible
links. The frequency analysis of the displacement measurements shows that the
jerk limitation can achieve vibration reductions in the order of 10 dB for the main
modal components, and that the magnitued of higher-order modes are basically
not excited by the motion profiles.
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