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Abstract. This paper presents an approach to the optimal control of a spatial flexi-
ble mechanism. A highly accurate dynamic model of the system is briefly resumed. 
Then, in order to be able to employ the classical optimal control theory, a lineari-
zation of the model with consideration of gravity force is done. After that the cho-
sen optimal control is described, and the most important results of the simulation 
are presented and discussed.  
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1 Introduction 

Robot motion control is an important criterion for robot manufactures, so the 
current investigations are focused on increasing the robot performance, robot cost 
reduction, safety improvements, and increasing new functionalities. Therefore, 
there is a need to continuously improve the mathematical models and control 
methods in order to achieve conflicting requirements, such as performance increas-
ing of a weight-reduced robot, with lower mechanical stiffness and more involved 
vibration modes. 

Vibration control of flexible mechanisms as a subset of robot motion control  is 
still an open issue in scientific researches (Tokhi and Azad 2008). A large amount 
of work has been carried out in the field of flexible mechanism modeling, analysis, 
and control since the early 1970s. Several techniques are currently available for 
modeling flexible mechanisms. Most researchers have concentrated their investi-
gation on the describing of accurate mathematical models both for single body and 
multi-body system (Benosman, Boyer et al. 2002, Dwivedy and Eberhard 2006, 
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Tokhi and Azad 2008). The classical approaches applied in flexible multi-body 
systems deals with mechanisms featuring large displacement and small defor-
mations. Two main techniques have been adopted in literature (Naganathan and 
Soni 1988, Nagarajan and Turcic 1990, Kalra and Sharan 1991, Ge, Lee et al. 
1997, Martins, Mohamed et al. 2003, Dwivedy and Eberhard 2006): the Finite El-
ement Method (nodal approach) and the Assumed Mode Method (modal ap-
proach). Rigid body and elastic motion coupling effects have been considered in 
different works and approaches, firstly by considering only the effect of the rigid 
body motion on the elastic deformation (Naganathan and Soni 1988, Kalra and 
Sharan 1991) and then by considering also the effect of the elastic deformation on 
the rigid body motion (Nagarajan and Turcic 1990). Floating Frame of Reference 
(FFR) formulation (Shabana 1997, Shabana 2005) is the consequence of these 
works.  

In this paper a linearized model is developed with the aim of designing model-
based control techniques for spatial flexible link mechanisms. Linear models are 
often used to develop control strategies for this class of mechanism, including ro-
bust control (Caracciolo et.al 2005), model predictive control (Boscariol et.al 
2010, Boscariol et. al 2009, Boscariol and Zanotto 2012) and sliding mode control 
(Kurod and Dixit 2012), just to cite a few notable works on the subject. The accu-
racy of the linearization procedure introduced in this paper is measured by a com-
parison with the nonlinear model, and its use is demonstrated trough the develop-
ment of a LQR position and vibration control. 

2 Dynamic Model of a Flexible Mechanism 

One of the most studied problems in flexible robotics is dynamic modeling. 
Differently to conventional rigid robots, the elastic behavior of flexible robots 
makes the mathematical deduction of the models, which govern the real physical 
behavior, quite difficult. Here the method used for accurate modeling of the sys-
tems with large displacements and small elastic deformation is based on the 
Equivalent Rigid Link System (ERLS) concept which first was introduced for a 
planar mechanisms (Giovagnoni 1994), and then expanded to spatial environment 
in (Vidoni, Gasparetto et. al 2012; Vidoni, Gasparetto et al. 2013) which is briefly 
recalled in this section. According to the work (Boscariol, Gasparetto et. al 2013), 
the ERLS-FEM dynamic model for flexible-link mechanisms is described by the 
ODE system of equations: 
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in which M is the mass matrix, J is the Jacobian matrix of the manipulator, 
𝑴𝐺1and 𝑴𝐺2 are the Coriolis contribution terms, K is the stiffness matrix, and 
𝑴𝐶1, 𝑴𝐶2 and 𝑴𝐶3 are the terms introduced by the centrifugal terms of accelera-
tion.  𝒇 is the vector of nodal forces, 𝒈 is the gravity vector, 𝒒 is the vector of rig-
id displacements and 𝒖 is the vector of nodal displacements. Rayleigh damping 
has been considered in the model, through α and β constants. 

3 Linearized Model 

The dynamic model represented by eq. (1) is nonlinear, due to the quadratic re-
lation between the nodal acceleration and the velocities of the free coordinates. 
Thus it cannot be used to design a linear-model based control. In order to develop 
a state-space form linearized version of the dynamic system of eq. (1) a lineariza-
tion procedure has been developed. First of all, eq. (1) can be written in the follow-
ing form, by defining a state vector x(t) and an input vector v(t): 

 
𝑨(𝒙(𝑡))𝒙̇(𝑡) = 𝑩�𝒙(𝑡)�𝒙(𝑡) + 𝑪(𝒙(𝑡))𝒗(𝑡) 

 
In which matrices A, B and C do not depend on v(t). If xe is a steady equilibrium 
point for the system in eq. (1), a linearization procedure can be set by applying a 
Taylor series expansion: 
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Since xe(t) is an equilibrium point for the system, the following equation holds: 
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Therefore the system linearized around the equilibrium point can be written as: 
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The matrices in eq. (4) are constant, so we have obtained a linear model in the 

form: 
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in which: 
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Matrix C remains unchanged after the linearization process, since it is com-

posed of only zeros and ones. Eq. (5) can be brought to the most common form of 
a Linear Time Invariant (LTI) model by using the simple relations 𝑭𝑙𝑖𝑛 = 𝑨−1𝑩 
and 𝑮𝑙𝑖𝑛 = 𝑨−1𝑪: 

 

�∆𝒙̇(𝑡) = 𝑭𝑙𝑖𝑛∆𝒙(𝑡) + 𝑮𝑙𝑖𝑛𝒗(𝑡)
𝒚(𝑡) = 𝑯𝑙𝑖𝑛𝒙(𝑡) + 𝑫𝑙𝑖𝑛𝒗(𝒕)                                 (10) 

4 Reference Mechanism 

The mechanism chosen as the basis of the simulations is a L-shape mechanism, 
made by two steel rods, connected by a rigid aluminum joint (figure 1). The rota-
tional motion of the first link, which is rigidly connected to the motor, can be im-
posed through a torque-controlled actuator. The whole mechanism can swing in 
3D environment, so the effects of gravity on both the rigid and elastic motion of 
the mechanism can be considered and taken into account in the formulation. 

The mechanism shown in figure 1 is made by two aluminum beam whose 
length is 0.5 m, and their square section is 8 mm wide. Two Euler-Bernoulli finite 
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elements have been used for each link (figure 1). Since each finite element has 12 
degrees of freedom, every link has 18 degrees of freedom. After assembling the 2 
links and considering the constraints fixed by the kinematic couplings and ne-
glecting one of the nodal displacements in order to make the system solvable (see 
(Vidoni, Gasparetto et al. 2013)), the resulting system is described by 24 nodal 
elastic displacements and one rigid degree of freedom, as shown in figure 1. 

 
Fig. 1 The mechanism built in the laboratory for the experimental validation of the model 

(left), FEM discretization and nodal displacements (right) 
 

 
Fig. 2 Impulsive response: comparison between nonlinear and liner model: angular position 

q (left), nodal displacement u8 (right) 
 

4.1 Accuracy of the Linearized Model 
 

In order to estimate the accuracy of the linearized model, a comparison be-
tween the impulsive response for linear and nonlinear models is set. The mecha-
nisms is fed with a 5 Nm torque impulse applied to the crank with 0.1 sec delay. 
The initial configuration has been arbitrarily chosen as 𝑞𝑒𝑞 =  0  deg, but similar 
results can be obtained for any choice of the linearization configuration of the 
mechanism. The comparison is set in terms of rigid displacement q and of nodal 
displacement u8, but it could be extended also to all the other nodal displacements 
belonging to the model leading to similar results. As it can be seen from figure 2 
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the linearized model shows a very high level of accuracy, both in terms of q dis-
placement and nodal displacement u8. It can be noticed that the impulsive response 
of the two models lead to two very similar responses, since the error, defined as 
the difference between the two responses, is almost negligible. 

5 Results 

The linearized dynamic model of the system, obtained in Section 4 eq. (10), 
can be used to synthesize an optimal LQR controller. The output vector y was de-
fined to be the full state vector (i.e. H was taken as the identify matrix). 
The goal is to determine the control action 𝜏(𝑡), which allows minimizing the per-
formance index W, defined as: 
 
𝑾 = ∫ [𝒚𝑇(𝑡)𝑸𝒚(𝑡) + 𝜏𝑇(𝑡)𝑳𝜏(𝑡)]𝑑𝑡 = ∫ [𝒙𝑇(𝑡)𝑯𝑇𝑸𝑯𝒙(𝑡) + 𝜏𝑇(𝑡)𝑳𝜏(𝑡)]𝑑𝑡∞

0
∞
0             

(12) 
 

Q and L matrices are used to tune the control system, by defining the weight of 
each value of the state vector x(t) and of control action 𝜏(𝑡) on the cost function c. 
The resulting gain matrix K can be evaluated using the well-known results of op-
timal control theory (Kirk 2012).  

The results of two numerical tests are reported in figure 3 and 4. The results re-
fer to  two test case: in the first one only the angular position q is weighted in ma-
trix Q, while in the second one also the elastic displacements are weighted. The in-
itial position of the L-shape mechanisms is taken as q = 90 deg. A step reference 
input with amplitude ∆𝑞 = 4 deg with 0.05 s delay was given to the mechanisms 
actuator which is an electrical motor.  Our aim is to reach the defined position for 
the rigid DOF coordinate with a limited amplitude of vibrations.  
 

 

Fig. 3. LQR control: angular position (left), applied torque (right), with and without vibra-
tion control 
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Fig. 4. LQR control: time evolution of elastic displacements u7 and u12,  with and without 

vibration control 
 

Figure 3 shows the step response of the free coordinate (left) and the torque 
produced by the actuator (right). The amplitude of nodal vibrations u7 and u12 are 
shown in figure 4. All the simulations have been run with the linear controller act-
ing on the nonlinear mechanism. It can be seen that the LQR control can achieve a 
good vibration damping: the amplitude of nodal displacement are kept constant 
within 0.5 s approximately. The angular displacement q can track quite well the 
reference signal, but with a constant error. This could be reduced by introducing an 
integral action in the controller. 

7 Conclusion 

In this work a linearized model for spatial flexible link mechanism has been 
developed. The dynamic model can account for gravity acting on any direction. 
The accuracy of the linearized model is evaluated trough a comparison with the re-
sponse of the nonlinear model. The linearization procedure allows to develop 
model-based control strategies for this class of mechanisms. A model design pro-
cedure has been applied to build a LQR position and vibration control. The results 
show that the synthesized LQR produces fast response with a good vibration 
damping. 
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