
A minimum energy trajectory algorithm for
mechatronic systems with regenerative braking

Paolo Boscariol∗, Andrea Gasparella†, Alessandro Gasparetto∗, Renato Vidoni†

∗Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica

University of Udine, Italy

Via delle Scienze 208, 33100 Udine

Email: paolo.boscariol@uniud.it, gasparetto@uniud.it

†Faculty of Science and Technology

Free University of Bolzano/Bozen, Italy

Piazza Università 5, 39100 Bolzano
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Abstract—In literature, several different optimal motion crite-
ria have been proposed, in particular for achieving fast motion
while retaining adequate smoothness. Recently, the concept of
energy efficiency in automation industry and robotics has become
a major topic.

In this work, the problem of finding the optimum compromise
between the energy required for the movement of the robot joints,
the jerk content and the time taken to perform the planned
trajectory is addressed for a generic mechatronic drive-motor-
transmission-load system. With respect to the available literature,
the energy-related term has been computed taking also into
account the possibility to regenerate the braking energy, thus
splitting the acceleration and deceleration phases.

Numerical results and comparisons show that the proposed
approach can potentially bring important energy savings while
maintaining a minimal jerk content.

I. INTRODUCTION

In the modern industry, robots, manipulators and tool ma-

chines are widely used in the production cycle in order to

perform fast, repetitive and precise operations, and, hence,

enhance the performance and lower the production costs.
Over the last decades, a significant increase of the problems

related to the climate change and the depletion of fossil re-

sources is occurring. As a consequence, both the electricity and

the crude oil prices have been increasing in many industrial

countries. Thus, energy efficiency and sustainability become

important targets in all the engineering fields and are also

among the main targets of the European Community. To this

end, focusing the attention on automated industrial systems, an

integrated approach that exploits optimum motion planning,

effective controls, state of the art sensors and actuators,

and energy saving techniques and technologies, can allow to

design, upgrade and enhance the efficiency of mechatronic

systems such as robots, tool machines and automatic systems.
To this purpose, the development of high performance

trajectory planning algorithms could give an important con-

tribution. Recently, the relation between vibrations and the

consequent possibility of premature joint wear and mechanical

failures have been investigated demonstrating a performance

enhancement when smooth trajectories are planned [1]. An

extended review of the problem can be found in [2], [3].
This work, among the different approaches, focuses on the

off-line non model-based techniques.

Thus, a novel trajectory planning algorithm for industrial

robots is here developed: it founds an optimal trajectory by

adjusting the time distance between consecutive via points in

order to minimize a cost function of choice; constraints on

physical parameters such as velocity, acceleration and jerk

can also be specified as inputs of the procedure. Similar

approaches can be found in literature focusing on minimum-

energy [4], [5], [6], [7], [8], minimum jerk and hybrid ap-

proaches [9], [10], [11].

In particular, the planning algorithm here presented has been

developed with the aim to balance traveling time, jerk content

and energy losses when regenerative brakes are exploited.

II. OPTIMIZATION PROBLEM

The optimization strategy here discussed aims at minimiz-

ing/reducing the motor Joule losses during the braking phases

by studying a proper off-line non-model based algorithm. Such

a reduction is obtained searching a compromise between the

allowed increment of the braking time and the reduction of

the RMS current value in the same phase. Then, the idea is

to allow a longer braking time with the aim to reduce the

motor braking torque and, thus, the Joule losses on the motor

windings. Such a strategy and evaluation have been applied

by considering a motor with an AFE (Active Front End) that

allows the recovery of the motor braking energy.

The off-line non model-based trajectory planning usually

deals with physical quantities such as joint position, velocity

and acceleration. Thus, it is necessary to write the current that

flows inner the motor windings, variable to minimize, as a

function of these quantities.

The optimization strategy is based on the minimization of

a cost functional J(T, α) defined by the weighted sum of the

integral of the squared value of the end-effector acceleration

during the braking phase, and the overall trajectory time T .

In such a way, a compromise between the traveling time and

the Joule losses can be found.

The following optimization problem is formulated:

minU∈U J = K1

∑N

i=1
hi +K2

∫
T
Jerk2(t)dt+K3

∫
Tb

α2(t) dt

s.t. g(hi) = 0
f(hi) ≤ 0

(1)
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where: α(t) is the end-effector acceleration and hi is the

generic time blend between two via-points. In addition, eq.

1 shows also the constraints that have to be fulfilled in

order to have a spline with position, velocity and acceleration

continuity, and the constraints that the physical quantities of

the trajectory have to satisfy.

The considered mechanical system for which the optimiza-

tion problem is written and applied is a generic joint that

allows both a transmission ratio and a rack and pinion system

for the conversion of the motion from rotational to linear.

The rack and pinion system is described by the following

equations:

{
Pmpinion(t) = ωL(t)TL(t)

Pmrack(t) = fA(t)vL(t) +Mr2
dωL

dt

(2)

where the quantities Pmpinion(t) and Pmrack(t) represent the

mechanical power requested by the motor shaft and the rack

respectively. ωL(t) and TL(t) are the angular velocity and the

torque reflected to the load, i.e. after the transmission ratio.

Moreover, fA(t), vL(t), M , r, are the friction force on the

end-effector, the linear velocity, the mass of the end-effector
and pinion radius.

By equating the two mechanical power expressions in eq.2,

the overall load torque after the gear ratio TL can be computed.

Then, the following holds:

TL(t) = Tr + JL
dωL

dt
(3)

where Tr=far [Nm] is the equivalent resisting torque and

JL=Mr2 [Kgm2] is the equivalent moment of inertia, re-

flected to the motor shaft.

By reflecting the torque TL on the motor shaft, the motor

torque Tm can be computed from the following system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tm(t) = T ′
L + Jm(t)

dωm

dt

T ′
L(t)ωm(t) = (JL

dωL

dt
+ Tr)ωL(t)

ωm(t) = KrωL(t)

(4)

with ωm(t) the motor angular velocity, ωL(t) the load

angular velocity, Jm the motor moment of inertia, JL the load

moment of inertia.

By solving the system in 4, the following expression can

be found:

Tm(t) = Tr

Kr
+

(JL+JmK2
r )

Kr

dωL

dt

= T ′′
r + Jeq

dωL

dt
= T ′′

r + Jeqα(t)
(5)

where α(t) =
dωL

dt
, is the joint acceleration.

The relation between α(t) and the current on the motor

windings im can be computed from the following system of

equations: {
Tm(t) = T ′′

r + Jeqα(t)
Tm(t) = Kemim

(6)

where Kem the electromagnetic constant. Thus, the im current

written as a function of the joint acceleration α results:

im(t) =
T ′′
r + Jeqα(t)

KemKr
(7)

The Joule losses along the braking phase can be estimated

as:

EJ = R
∫
Tb

i2m(t)dt

= R
KemKr

∫
Tb
[T ′′2

r + 2JeqT
′′
r α(t) + J2

eqα
2(t)]dt

(8)

By looking at the Joule losses expression EJ , there is a

term related to the integral value of α2(t), as well as in

the cost functional J(T, α) in eq.1. This justifies the role of

the minimization of the integral of the squared value of the

acceleration in the trajectory planning problem under study.

Such a minimization is made only during the braking phase

(Tb) and not during the acceleration time in order to allow the

system to exploit the overall motor nominal torque.

III. COST FUNCTION

Now, given the cost functional in eq.1 the target is to

minimize it under the problem constraints.

The first term does not need any manipulation to be

implemented and computed while the second term has to

be manipulated and expressed in a suitable manner. Since

the chosen primitives are cubic splines, the acceleration is

piecewise continuous and the jerk is piecewise constant. Thus,

the integral can be written trough the following sum:

∫
T

Jerk2(t) =

N+1∑
i=1

(
αi+1 − αi

hi

)2

hi (9)

in which i is the polynomial index.

By recalling the mathematical expression of the spline as a

polynomial function [2], the term can be rewritten as:

∫
T
Jerk2(t) =

∑N+1
i=1

(
6ai

3hi+2ai
2−2ai

2

hi

)2

hi

=
∑N+1

i=1 (6ai3)
2hi

(10)

where ai3 is the 4-th coefficient of the i-th polynomial.

The third term in the cost function (1) is proportional to

the integral of the squared value of the acceleration during

the time blends in which velocity and acceleration differ in

sign, i.e. during a braking phase. Again, a sum is used for

the numerical evaluation of the integral. In this case the

sum represents an approximation of the integral since the

acceleration is not piecewise constant in the hi. In order to

reduce the computational error, the hi is split in small time

intervals of stepL time amplitude.

The chosen algorithm for the sum calculus results:
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∫
Tb

α2(t) dt �
N+1∑
i=1

Nstep∑
k=1

(6ai3hik + 2ai2)
2Mask(i, k)stepL

(11)

where Mask(i, k) is:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

acceleration(i, k) = 6ai3hik + 2ai2
speed(i, k) = 3ai3h

2
ik + 2ai2hik + ai1

Pwr(i, k) = speed · acceleration
Mask(i, k) = 0.5 · Pwr − abs(Pwr)

Pwr + eps

(12)

The i and k indexes refer to the generic i-th time interval

between two consecutive via-points hi and the generic k-

th discretization interval inner the hi respectively. To allow

a good compromise between the algorithm speed and the

integral calculus accuracy, the stepL has been chosen equal

to 0.01 s. By looking at the Mask(i, k) term, there is a cost

function increment, i.e. it is equal to one, only when velocity

and acceleration are discordant.

The small quantity eps that appears inside the mask defini-

tion is inserted to avoid the divergence of the ratio when Pwr
approaches zero.

A. Constraints

1) Equality Constraints: The equality constraints that must

be satisfied by the trajectory are the equations that impose

both the traveling along the via-points and the continuity in

position, velocity, acceleration and jerk. These requirements

are fulfilled by using a classical third order polynomial spline

with the introduction of two extra virtual via-points put

between the first and the last via-point.
The spline mathematical expression between the via-points

is:

S(t) =
a13(t− t0)3 + a12(t− t0)2 + a11(t− t0) + a10,
t∈[t0, t1]
a23(t− t1)3 + a22(t− t1)2 + a21(t− t1) + a20,
t∈[t1, t2]
...

aN+2
3 (t− tN+1)

3 + aN+2
2 (t− tN+1)

2 + aN+2
1 (t− tN+1) + aN+2

0 ,
t∈[tN+1, tN+2]

(13)

where tk represents the traveling time on the via-point, i.e.

problem unknowns. The formulation can be rewritten by

means of the following substitution:

(t− ti) −→ t′i, t′i∈[0, hi] (14)

where i is the generic polynomial index.

The constraints, the via-point passage and continuity up to

the 2nd order can then be written with the following equation

system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π1(0) = q1
Π′

1(0) = 0
Π′′

1(0) = 0

Πi(0) = qi with : i ∈ [3, · · ·, N ]
Πi(hi) = Πi+1(0)
Π′

i(hi) = Π′
i+1(0)

Π′′
i (hi) = Π′′

i+1(0)

Πi(hi) = Πi+1(0) with : i ∈ {2, N + 1}
Π′

i(hi) = Π′
i+1(0)

Π′′
i (hi) = Π′′

i+1(0)

ΠN+2(0) = qN+2

Π′
N+2(0) = 0

Π′′
N+2(0) = 0

(15)

where the i-th polynomial and its time derivatives are

defined as:

Πi = ai3(t
′
i)

3 + ai2(t
′
i)

2 + ai1(t
′
i) + ai0, t

′
i ∈ [0, hi](16)

Π′
i = 3ai3(t

′
i)

2 + 2ai2(t
′
i) + ai1 (17)

Π′′
i = 6ai3(t

′
i) + 2ai2 (18)

Π′′′
i = 6ai3 (19)

Thus, the system variables are the polynomial coefficients

aji and the time intervals hi.

2) Inequality Constraints: These constraints are necessary

to limit velocity, acceleration and jerk peak values during

the planning phase. Moreover, constraints related to the

optimization variables, i.e. the hi widths, are given. They

result in the following equations systems:⎧⎨
⎩

aj3 ≤ Jerkmax/6

aj2 ≤ Accelerationmax/2

aj1 ≤ Speedmax

(20)

⎧⎨
⎩

aj3 ≥ Jerkmin/6

aj2 ≥ Accelerationmin/2

aj1 ≥ Speedmin

(21)

The hi-s are upper bounded by a user defined value while

lower bounded by the ratio between the via-point distance and

the maximum allowable velocity.

IV. NUMERICAL SIMULATION

To evaluate the effectiveness of the proposed approach,

three different algorithms have been implemented and

compared:

• classical spline: fixed and equal time blends between the

cubic spline via-points [12];
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• SPL3J algorithm: minimum time-jerk algorithm [10],

[13];

• SPL3B algorithm: proposed optimum algorithm.

Three different paths have been chosen in order to quantify

the performance enhancement in terms of required energy and

vibrational content, which is measured trough jerk. The two

optimum algorithms have been considered allowing a free total

execution time, i.e. with a possible increment of the 1%, 5%,

10%, 20%, 30% e 50% with respect to the time required by

the basic algorithm.

The chosen paths are:

TRAJECTORY 1: (Fig. 1)

Path (m): [0,−0.304, 0.557, 1.100, 1.751, 1.65, 0.86, 0.80, 0]
Time: 5 s

TRAJECTORY 2: (Fig. 2)

Path (m): [0, 0.4, 0.8, 1.2, 0.8, 0.4, 0]
Time: 5 s

TRAJECTORY 3: (Fig. 3)

Path (m): [0, 0.4, 0.8, 1.2, 0.8, 0.4, 0, 0.4, 0.8, 1.2, 0.8, 0.4, 0]
Time: 5 s

Fig. 1. Trajectory 1: obtained with the basic algorithm. Crosses represent the
via-points.

Weigths Kt, Kj and Kpw that appear in the cost function

(eq. 1) have been properly chosen in order to obtain the

proper trajectory times (Tab. I,III,V). In the following Tables,

Tab.II, IV, VI, the numerical results related to the implemented

trajectories and to the compared algorithms are shown.

The results show, as expected, that the two optimum algo-

rithms outperform the classical spline approach.

Moreover, it is shown that a delay as small as 1% with

respect to the basic trajectory, i.e. the classical third order

spline, can bring a noticeable reduction of energy losses. Both

algorithms bring energetic improvements that are directly pro-

portional to the allowed delay. By comparing the two optimum

approaches in terms of energy expenditure, it can be seen how

Fig. 2. Trajectory 2 obtained with the basic algorithm. Crosses represent the
via-points.

Fig. 3. Trajectory 3 obtained with the basic algorithm. Crosses represent the
via-points.

SPL3J SPL3B
Delay Kt Kj Kt Kpw Kj

1% 42.1 0.497 233 27.05 0.598
5% 31.5 0.48 193.05 27.1 0.573

10% 10.9 0.224 229 48 0.23
20% 30 1 120 26.25 1
30% 19 1 100 33.2 1
50% 7.87 1 87.73 60.87 1

TABLE I
DELAYS AND WEIGHTS FOR TRAJECTORY 1

the proposed SPL3B algorithm allows to decrease significantly

the energy requirement and to obtain better performances with

respect to the SPL3J one. Results show an improvement up to
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SPL3J SPL3B Enhancement
Delay Jerk Energy Jerk Energy

1% 94.14% 70.8% 91.15% 72.9% 7.01%
5% 95.54% 74.3% 92.24% 75.9% 6.18%

10% 96.28% 77.9% 92.28% 79.1% 5.11%
20% 97.52% 82.5% 96.48% 83.9% 7.72%
30% 98.31% 86% 97.3% 87% 7.26%
50% 99.2% 91% 98.2% 91.2% 2%

TABLE II
REDUCTION IN PERCENTAGE OF THE JERK AND ENERGY TERMS OF THE

TWO OPTIMUM ALGORITHM WITH RESPECT TO THE CLASSICAL SPLINE

FOR THE TRAJECTORY 1. THE LAST COLUMN GIVES THE ENHANCEMENT

IN TERMS OF ENERGY SAVED OF THE SPL3B WITH RESPECT TO THE

SPL3B ALGORITHM.

SPL3J SPL3B
Dlay Kt Kj Kt Kpw Kj

1% 10.45 1 40 23.6 1
5% 8.25 1 35 25.4 1
10% 6.26 1 30 27.4 1
20% 3.73 1 22 30.5 1
30% 2.3 1 17 34.5 1
50% 0.968 1 10.6 42 1

TABLE III
DELAY AND WEIGHTS FOR THE TRAJECTORY 2

SPL3J SPL3B Enhancement
Delay Jerk Energy Jerk Energy

1% 99.27% 34% 98.99% 38% 6.174%
5% 99.4% 41.7% 99.13% 45.5% 6.5%

10% 99.53% 48.8% 99.27% 52.3% 6.876%
20% 99.7% 60.5% 99.47% 63.1% 6.6%
30% 99.79% 69% 99.6% 71% 6.48%
50% 99.9% 79.8% 99.75% 80.9% 5.203%

TABLE IV
REDUCTION IN PERCENTAGE OF THE JERK AND ENERGY TERMS OF THE

TWO OPTIMUM ALGORITHM WITH RESPECT TO THE CLASSICAL SPLINE

FOR THE TRAJECTORY 2. THE LAST COLUMN GIVES THE ENHANCEMENT

IN TERMS OF ENERGY SAVED OF THE SPL3B WITH RESPECT TO THE

SPL3B ALGORITHM.

SPL3J SPL3B
Delay Kt Kj Kt Kpw Kj

1% 410 1 780 19 1
5% 325 1 710 23.3 1
10% 245.5 1 675 31.4 1
20% 145.8 1 500 37.1 1
30% 90 1 393 43.9 1
50% 38.2 1 276 62 1

TABLE V
DELAY AND WEIGHTS FOR TRAJECTORY 3

SPL3J SPL3B Enhancement
Delay Jerk Energy Jerk Energy

1% 87.42% 40.1% 86.94% 41.7% 3.39%
5% 89.64% 47.1% 88.74% 48.6% 2.77%
10% 91.8% 53.5% 90.67% 54.9% 3.05%
20% 94.69% 64.3% 93.6% 65.4% 3.18%
30% 96.45% 71.9% 95.42% 72.5% 2.33%
50% 98.26% 81.6% 97.28% 82.0% 1.70%

TABLE VI
REDUCTION IN PERCENTAGE OF THE JERK AND ENERGY TERMS OF THE

TWO OPTIMUM ALGORITHM WITH RESPECT TO THE CLASSICAL SPLINE

FOR THE TRAJECTORY 3. THE LAST COLUMN GIVES THE ENHANCEMENT

IN TERMS OF ENERGY SAVED OF THE SPL3B WITH RESPECT TO THE

SPL3B ALGORITHM.

8% for these simple and not recursive trajetories thus allowing

to forecast better performances when more complex paths are

to be travelled.

V. CONCLUSION

In this work, an optimal trajectory planning technique that

takes into account the simultaneous minimization of the tra-

jectory time, the jerk content and the energy losses during the

braking/recovery phase has been presented. The algorithm has

been implemented in a Matlab simulator and its performances

are compared with other two well known planning algorithms

showing good performances and the effectiveness of the idea.

Future work will cover the experimental validation of the

proposed technique.
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