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Abstract

Model-based trajectory planning algorithms are capable of providing a high level
of performance. However, they often lack in robustness, which severely limits
their field of application. In this paper the method of parametric desensitiza-
tion is applied to nonlinear models, providing a feasible solution to the problem
of robust model-based trajectory planning for nonlinear plants with parametric
uncertainties. By using an indirect variational solution method, the necessary
optimality conditions deriving from the Pontryagin’s minimum principle are im-
posed, and lead to a differential Two-Point Boundary Value Problem (TPBVP);
numerical solution of the latter is accomplished by means of collocation tech-
niques. The method is applied to two test-cases: a nonlinear spring-mass system
and a flexible link manipulator with Coulombian friction. Results show that the
technique developed in this paper can improve significantly the robustness of
the resulting trajectory to parametric model mismatches in comparison with
the conventional method.
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1. Introduction

The operation of high-speed manipulator requires the use of accurate and
clever techniques both in the design of closed-loop controllers, both in the design
of smooth trajectories. The first approach is aimed at ensuring that the robot
follows a pre-defined trajectory, while the latter concerns the definition of the
trajectory. The whole problem is even more evident and hard to solve when the
robot presents some structural flexibility, since the presence of oscillations even
after the completion of the task severely reduces the operativeness of the robot
[17, 6, 21]. A large number of works have been developed to find solutions to the
aforementioned problem by generating smooth trajectories, as reported in the
review papers [3, 22]. A main distinction can be made among trajectory plan-
ning algorithms separating model-free and model-based approaches. The main
advantage of the first approach is that the resulting trajectory can be adapted
to several robots, and, moreover, the knowledge of the dynamics of the system
is not needed. This is a very useful feature, since this kind of expertise is not
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often found in industry. On the other hand, model-based approach requires the
knowledge of the dynamics of the robot for which the trajectory is planned, but
generally they prove to be more accurate and usually lead to higher levels of per-
formance. Most model-based approaches are based on optimal control theory,
for this reason they provide a limited robustness to model-plant mismatches, as
emphasized in [15]. This means that a trajectory that is optimal in the nominal
case, is far from the optimal solution if applied to a perturbed plant.

Model-free approaches are often based on geometrical approaches [7, 18],
since the trajectory is defined as a sequence of polynomial functions [10], splines
[23] or NURBS [33]. Other possible ways to generate a trajectory is to use filters
[8, 9].

Model-based approach have been studied in a large number of works, with
applications to basically every kind of robot. The solution of the planning
problem has been investigated for mobile robots in papers such as [5]. Flexible
joint robot have been considered in [16, 32]. Also the design of trajectories for
Flexible-Link Manipulators (FLM) have been studied quite extensively. Abe
in [1] developed a method based on particle swarm optimization, while Kojima
et. al [30] used a genetic algorithm to compute a trajectory for a two-link
manipulator. A genetic algorithm is the choice for computing trajectories for
flexible-link mechanisms in the work [4] by Ata et. al. Approaches based on the
definition and the solution of Two-Point Boundary Value Problems (TPBVP)
have been developed, among others, in [31, 11, 12] focusing on flexible link
mechanisms.

In this work a solution to the problem of computing point-to-point trajec-
tories is analyzed, with a particular focus on the robustness of the solution to
parametric uncertainties. Therefore the method used here can be used when
one or more parameters of the plant under consideration cannot be estimated
with sufficient precision or when its change is due to an unmodeled dynamics.
The topic of robustness have been extensively studied in the area of closed-loop
control design [2, 28, 40], but to the best of authors’ knowledge, there are few
that specifically focus on robust trajectory planning algorithms. One example
is [20], in which robustness is achieved by introducing in the fitness function a
term of Gaussian cumulative noise.

The aim of this paper is to propose a method for planning a robust trajectory
for mechatronic systems. Such method is based on the solution of a two-point
boundary value problem and on the concept of parametric desensitization.

Moreover, the innovative method proposed here applies to nonlinear plants,
therefore it greatly enhances the field of application of the method presented in
[38, 29, 18], which is also based on the use of sensitivity functions. However, the
mentioned method can be applied only to linear plants, and is used to design a
closed-loop control system.

The capabilities of the approach analysed in this paper are shown by means
of two benchmark problems, i.e. a single-mass undamped system with nonlinear
elasticity, and a single-link manipulator with Coulombian friction.
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2. Formulation of trajectory planning algorithm as a two-point bound-

ary value problem

The target here is to develop an optimal trajectory for a mechatronic system.
Here point-to-point trajectory optimization problems are considered, in which
only the initial and final end-effector positions are given, and the manipulator
is free to move between them. The path is therefore subject to optimization,
and it is selected with the aim of minimizing a cost functional. Such cost may
depend on execution time, actuator effort, jerk (or torque rate), or a combination
of these variables. First of all, let us define the optimization problem that
represents the trajectory planning problem. Given a dynamic system, that
might be linear or nonlinear, described by a differential equation in the form:

˙x(t) = Π(x(t), t,u) (1)

in which x is the state variable of the system, and u is the control vector, and
t is the time. If a cost function f(x, t,u) is chosen, the following optimization
problem can be stated:































min J(x(t), t,u) = min
tf
∫

t0

f(x, t,u)dt

subject to :
x(t0) = α
x(tf ) = β
ẋ(t) = Π(x(t), t,u)

(2)

By solving this optimization problem a trajectory for the state vector x is
found so that the cost function J is minimized. The trajectory is constrained
respect to the dynamics of the system Π(x(t), t,u) and to the value of x at the
initial (t = t0) and final (t = tf ) time. A solution of the optimization problem
in equation (2) can be found using the calculus of variations and Pontryagin’s
Minimum Principle (PMP) [36].

First of all, the Hamiltonian of the system must be defined as:

H = f + ΛTΠ(x(t), t, u) (3)

in which Λ = [λ1, . . . , λN ]T is the vector of Lagrangian multipliers, which
has the same size of the state vector x. The necessary conditions for finding a
minimum of the problem in equation (2) are:

∂H

∂u
= 0 (4)

ẋ =
∂H

∂Λ
(5)

Λ̇ = −
∂H

∂x
(6)
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The above conditions can be put in a single system that makes the compu-
tation straightforward. By defining u∗ as the solution of equation (4), H∗(x, t)
is the Hamiltionian in which u has been substituted with u∗. A new system of
ordinary differential equation can be defined as:

ẏ =











∂H∗

∂Λ

−
∂H∗

∂x











(7)

The new state vector y is obtained by augmenting the original state vector
x with the vector of Lagrangian multipliers: y = [x,Λ]T . Among the infinite
possible trajectories of the dynamic system in equation (13), the aim is to find
the one that obeys to the boundary conditions y(t0) = α and y(tf ) = β.

A solution to this problem, that is basically a TPBVP (Two-Point Boundary
Value Problem), could theoretically be found in closed form. In many cases,
however, it is solved numerically, given the difficulty of finding an exact solution.
Collocation method [37, 11] and shooting method [25] are often used for this
task.

3. Formulation of the robust trajectory planning algorithm

The problem presented and solved in the previous section works very well
when the dynamic model used for planning the trajectory can reproduce faith-
fully the actual dynamics of the real system. This does not happen in all situa-
tions, given the difficulty of describing a complex plant with a reasonably simple
model. Moreover, sometimes it is not even possible to describe the dynamics
of the plant with just a single model. A common situation is when a robot is
driving a payload that changes, as in a pick & place operation. As the mass
carried by the robotic manipulator changes, also its dynamic model is altered.
Quite often also nonlinearities might be neglected during the modeling phase:
in this case the trajectory planning algorithm and the control loop are required
to compensate for the model-plant mismatches.

The solution to the problem of the robustness of trajectory planning algo-
rithms proposed in this paper is based on the use of sensitivity functions, which
are briefly introduced here. A function Ω(x, t, η) with continuous first partial
derivatives with respect to x and η for all (t, x, η) ∈ [t0, t1]×Rn ×Rp is consid-
ered. It is also supposed that η0 is the nominal value of the parameter η and
that the differential equation:

ẋ = Ω(t, x, η0) with x(t0) = x0

has unique solution x(t, η) over [t0, t1]. The continuous differentiability of Ω
with respect to x and η implies that the solution x(t, η) is differentiable with
respect to η near η0. If one writes:

4



P. Boscariol, A. Gasparetto
Robust model-based trajectory planning for nonlinear systems
Journal of Vibration and Control, published online before print February 3, 2015, doi:
10.1177/1077546314566834

x(t, η) = x0 +

∫ t

t0

Ω(s, x(s, η), η)ds (8)

then the partial derivatives of x with respect to η are:

xη(t, η) =

∫ t

t0

∂Ω

∂x
(s, x(s, η, η), xη(s, η)) +

∂Ω

∂η
(s, x(s, η), η)ds (9)

where xη = [∂x(t, η)/∂η] and [∂x0/∂η] = 0, since x0 is independent of η.
By taking the derivative with respect to t, it can be seen that xη(t, η) satisfies

the differential equation:

∂xη(t, η)

∂t
= A(t, η)xη(t, η) +B(t, η) (10)

where

A(t, η) =
∂Ω(x, t, η)

∂x

∣

∣

∣

∣

x=x(t,η)

and

B(t, η) =
∂Ω(x, t, η)

∂η

∣

∣

∣

∣

x=x(t,η)

Let S(t) = xη(t, η), then S(t) is the unique solution of the equation:

Ṡ(t) = A(t, η)S(t) +B(t, η) (11)

S(t) is the sensitivity function and eq. (11) is the sensitivity equation. The
sensitivity function allows to estimate the effect of parameter variations on the
solution of eq. (8).

The main idea behind the technique used in this paper is to augment the
plant dynamic model with the partial derivatives of the ODE system with re-
spect to a parameter η of choice. These partial derivatives are called sensitivity
functions. By imposing that their values must be zero at a given point of a
trajectory, the robustness with respect to the parameter η is increased. The
effectiveness of this approach has been shown both numerically [24, 38], and
experimentally [29] but only for the design of closed-loop control systems for
linear systems. For this reason the procedure followed in the aforementioned
papers cannot be applied to the test cases used here, which involve nonlinear
systems.

First of all, let us take into consideration the system of ordinary differential
equations Π(x, t,u, η) that describe the dynamics of the plant under consider-
ation. For each equation of the system, a sensitivity function can be written
using the notation of eq. (11). By taking the partial derivative of each equation
that belongs to Π(x, t,u, η) with respect to the uncertain parameter η, a new
set of differential equations are found in the form:
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Ṡ(t) = A(t, η)S(t) +B(t, η) (12)

Now an augmented system of differential equations can be composed by
joining equation (1) with the system in equation (12):

[

ẋ(t)

Ṡ(t)

]

=

[

Π(x(t), t,u, η)
A(t, η)S(t, η) +B(t, η)

]

(13)

It should be highlighted that the definition of the sensitivity equations allows
to calculate in a straightforward manner eq. (13), since:

S(t) :=
∂x(t)

∂η
; Ṡ(t) =

d

dt

∂x(t)

∂η
; A(t, η)S(t, η) +B(t, η) =

∂Π(x(t), t,u)

∂η
(14)

In the cases under consideration here the uncertain parameter is just one,
η, but the method shown here allows to take into consideration an arbitrary
number of uncertain parameters. If x(t) ∈ ℜn, and there are m uncertain
parameters, than simply S(t) ∈ ℜnm.

Now the optimization problem in equation (2) can be reformulated by in-
cluding the sensitivity conditions as well:























































min J(x(t),S(t), t,u) = min
tf
∫

t0

f(x,S, t,u)dt

s.to.
x(t0) = α
x(tf ) = β
S(t0) = 0
S(tf ) = 0
ẋ(t) = Π(x(t), t,u)

Ṡ(t) = A(t, η)S(t, η) +B(t, η)

(15)

The difference between equation (2) and (15) is that the latter problems
include a larger number of constraints. As it will be shown in the following, by
imposing that the sensitivity function are equal to zero at the beginning and at
the end of the trajectory, the parametric robustness of the planned trajectory
can be improved.

It is worthwhile to point out that optimization problem (15) can be also
computed automatically using a Computer Algebra System, such as Sage [39]
or Axiom [27], thus making the formulation of the TPBVP completely automatic
once Π, α, β, tf and η are chosen. The same numerical method used for solving
the problem in eq. (2) can be used here.

4. Test-case I: nonlinear mass-spring system

The test case under consideration here is a single mass system with a non-
linear spring, as in Figure 1. No damping elements are introduced. This bench-
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mark problem can represents a wide range of physical systems which are charac-
terized by the low-frequency a low-damping nonlinear dynamics such as gantry
cranes [13, 14], tanks with slosh [26] or tape drives [35], just to cite a few exam-
ples. The nonlinear characteristic of the spring is described by the elastic force
F :

F = kq + kq3 (16)

being q the displacement of the mass m from the rest position. Therefore
if u is the external force applied to the mass, the dynamics of the system is
described by the second-order differential equation:

mq̈ = −kq − kq3 + u (17)

The second-order ODE in equation (17) can be written in its first-order
version by choosing the state vector x as x = [q̇, q]T . With this choice the ODE
system that will be used to compute the optimal trajectory is:

ẋ =

[

−
k

m
(q + q3) +

u

m
q̇

]

(18)

The system in eq. (18) can be augmented by including the two sensitivity
function of the state vector x with respect to the elastic constant k, according
to the notation of equation (11):

d

dt

(

∂q̇

∂k

)

= −
1

m
(q + q3)−

k

m

∂q

∂k

(

1 + 3q2
)

d

dt

(

∂q

∂k

)

=
∂q̇

∂k

(19)

In this formulation the vector of sensitivity functions is S(t) =

[

∂q̇

∂k
,
∂q

∂k

]T

.

Therefore the TPBVP must be formulated considering as the plant dynamics
the augmented ODE:





ẋ(t)

Ṡ(t)



 =



















−
k

m
(q + q3) +

u

m

q̇

−
1

m
(q + q3)−

k

m

∂q

∂k

(

1 + 3q2
)

∂q̇

∂k



















(20)

Now the number of ODE is four, therefore the application of the PMP re-
quires to use four Lagrangian multipliers.

Figure 2 shows the planned trajectory for the nominal and the robust case,
in terms of mass position q. The boundary conditions for the two TPBVP solved
are: q(t = 0) = 1, q̇(t = 0) = 0, q(t = tf ) = 0, q̇(t = tf ) = 0, and the final time
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Figure 1: Mass-spring system

is tf = 2 s. Therefore the task represents a rest-to-rest maneuver with fixed
final time.

In order to evaluate the actual robustness of the two trajectories, Figure 3
and 4 shows the evolution of the mass position q when a perturbed plant is
fed with a feedforward force signal computed using the two strategies explained
above. It should be made clear that the application of a feedforward force profile
is used just to provide an evaluation of the residual vibration after the motion
completion, since our aim is to plan a trajectory for the mass position in the
interval t ∈ [0, tf ].

It can be clearly seen that for a value of the elastic constant k equal to 1.4
N/m (Figure 3) and k = 0.6 N/m (Figure 4) the residual vibration are much
lower for the robust trajectory. In the second case, the amplitude of the peak
residual vibration is close to zero. Both trajectories have been computed using
the nominal value k = 1 N/m.

The control profile u∗ is the solution of the first necessary condition imposed
by Pontryagin principle, i.e. eq. (4). For both the nominal and the robust
solution the cost function of choice is J = u2/2. The application of the definition
(3) to the ODE system of eq. (20) leads to the Hamiltonian:

H =
u2

2
− λ1

(

k

m
(q + q3)−

u

m

)

+ λ2q̇ −
λ3

m

(

q + q3 − k
∂q

∂k
(1 + 3q2)

)

+ λ4
∂q̇

∂k
(21)

and therefore, according to (4):

u∗ = −
λ1

m
(22)

The control profile u∗ is in general a function of x(t), S(t) and Λ(t) and
therefore it can be evaluated once the numerical solution to the problem in eq.
(15) is solved ([37]). The same procedure also applies to the solution of the
nominal problem of eq. (2). The value of u∗ for the nominal and the robust
case are shown in figure 5. It can be seen that the introduction of the robustness
constraints does lead, in this case, to an higher level of actuator effort.

A more detailed evaluation of the robustness is provided in Figure 6: here the
amplitude of the peak residual vibration is plotted versus the elastic constant
k, which varies in the range [0.3, 1.7] N/m, thus embracing a ±70% variation.
The result is that the robust trajectory performs better than the nominal one
for all the values of k, retaining the performance of the nominal trajectory for
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Figure 2: Nominal and robust trajectory for nonlinear spring-mass system: mass position q
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Figure 3: Response of the system with k = 1.4 N/m: nominal and robust trajectories
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Figure 4: Response of the system with k = 0.6 N/m: nominal and robust trajectories
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Figure 5: Mass-spring system: nominal and robust control action
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Figure 6: Nonlinear spring-mass system: peak residual vibration vs. elastic constant k

k = 1 N/m. Null residual vibration is also obtained for k ≈ 0.6 N/m for the
robust trajectory.

The technique used in this work is based on the use of constraints on the
value of the sensitivity function at the boundaries of the trajectory. In particu-
lar, by imposing that the sensitivity functions of eq. (19) must be zero at final
time, a minimization of the sensitivity of the trajectories to the elastic constant
k is obtained. In other words, a maximization of the robustness of the trajectory
is obtained. Since the additional constraint is posed at final time tf , what is ob-
tained is not the robustness of the whole trajectory to parametric uncertainties,
but the robustness at final time. The first result could be obtained by modifying
the cost function J of eq. (2) or by adding a constraint to it. This is not the
case taken into consideration in this work, since our purpose is to achieve mini-
mal residual vibration at the end of the trajectory. Since robustness is inversely
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proportional to sensitivity, the robustness properties of the planned trajectories
can be evaluated and shown with greater detail by a sensitivity analysis. Again,
this sensitivity analysis is performed for the final point of the trajectory.
The total energy of the mass-spring system at time t is:

E(t) = T (t) + U(t) (23)

being T the kinetic energy and U the elastic energy. The first one can be
evaluated as:

T (t) =
1

2
q̇(t)

2
(24)

while the elastic energy is:

U(t) =

q∗
∫

0

Fdq =

q∗
∫

0

(

kq + kq3
)

dq =k

(

1

2
q∗2 +

1

4
q∗4
)

(25)

The total energy of the system at final time can be evaluated numerically for
both the nominal and the robust trajectory reported above. The ratio ∂E

∂k

∣

∣

t=tf

is the sensitivity of the total energy of the system at final time. The value of
the energy of the system is used to estimate the error introduced by the para-
metric uncertainty on the stiffness k, since the final energy of the system should
be zero in the rest-to-rest motion under consideration here. The value of this
sensitivity is shown in Figure 7 as a function of the elastic constant k: it can
be clearly seen that within the range of k under consideration, the absolute
value of the sensitivity for the robust trajectories is always smaller than for the
nominal trajectory. This clearly indicates that the robustness, intended in the
sense of achieving lower residual vibration, is increased by the proposed method
in comparison with the conventional optimization method of eq. (2).
It can be demonstrated that the minimization of the sensitivity of residual en-
ergy is a direct consequence of the choice of the additional constraints of the
optimization problem of eq. (15). The residual energy of the system, i.e. the
total energy of the system at the final time of the trajectory is, according to eq.
(19–20) directly proportional to the mass displacement q(tf ) and the mass speed
q̇(tf ). Equivalently, the residual energy of the system is directly proportional
to the distance between the actual final state vector x(tf ).
The method introduced here includes a constraint on the sensitivity of the state
vector at the final time of the planned trajectory, with the direct effect of min-
imizing the sensitivity of the state vector x(tf ). Since the minimization of the
sensitivity to the uncertain parameter k implies maximum robustness to the
variation of the same parameter, and given the direct dependence of the total
final energy to the state vector at final time, it can be inferred that the mini-
mization of the final state vector implies the maximization of the robustness in
terms of residual energy of the system.
This statement holds true in the neighborhood of the nominal value of the un-
certain parameter, since the definition of the sensitivity function is, as explained
in section 3, limited to this range.
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Figure 7: Mass-spring mechanism: sensitivity of residual energy to elastic constant k, robust
and nominal trajectory
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Figure 8: Mass-spring mechanism: fre-
quency spectrum of residual vibration vs.
elastic constant k, nominal trajectory
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Figure 9: Mass-spring mechanism: fre-
quency spectrum of residual vibration vs.
elastic constant k, robust trajectory

In order to further quantify the effect of the application of the proposed
method in terms of residual vibration reduction, the amplitude spectrum of
residual vibration is shown for values of k in the range [0.3, 1.7] N/m for the
nominal and robust trajectory in Figure 8 and Figure 9, respectively. It can be
seen that the use of a robust trajectory leads to a lower harmonic content for
every frequency and value of spring stiffness taken into consideration.

5. Test-case II: flexible-link mechanism

The test case considered in this section is a single-link very flexible mech-
anism. The model proposed, which has been experimentally validated in [19]
and used, among others, in [34] will be briefly recalled here. The model is valid
under the assumption that link mass is concentrated at the tip, and that the
mechanism rotate on a horizontal plane, so that gravity effects can be neglected.
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The tip mass is m, while the length of the link is L, and the elastic constant of
the link is c. The mechanism is actuated by a DC motor with a reduction gear
whose reduction ratio is n, and the inertia of the motor shaft is Jm. The motor
dynamics can be described by the equation:

ku = Jm
¨̂
θm + v

˙̂
θm + Γ̂c + Γ̂coup (26)

in which k is the electromechanical constant of the motor, u is the DC voltage

applied to the motor, v is the viscous friction coefficient and Γ̂c = µrsign(
ˆ̇
θm) is

the Coulomb friction acting on the motor. Γ̂coup is the coupling torque between
the motor and the link. Being θm the angular position of the motor, and θt the
angular position of the tip mass, the coupling torque can be measured as:

Γcoup = mL2θ̈m = c(θm − θt) (27)

The quantities indicated with a ’hat’ mark are meant as measured on the
motor shaft, while the ones without are measured on the global reference frame

{X,Y} as in Figure 10. Therefore the following can be used: θ̇ =
ˆ̇
θ/n and

Γ = nΓ̂, leading to:

Γ̂coup =
c

n
(θm − θt) (28)

Equations (26) and (28) can be used together to define the dynamics of the
whole systems as:

ẋ =

















θ̇m

−
v

Jm
θ̇m −

1

Jmn2
Γcoup + µrsign(θ̇m) +

k

Jmn
u

Γ̇coup

−
cv

Jm
θ̇m −

c

Jmn2 +mL2
Γcoup + µrsign(θ̇m) +

ck

Jmn
u

















(29)

in which ẋ = [θm, θ̇m,Γcoup, Γ̇coup]
T . The ODE system described by equation

(29) is nonlinear, due to the presence of the Coulomb friction term µrsign(θ̇m).
The value of the parameters that appear in eq. (29) are shown in Table 1.

The ODE system in equation (29) can be used to plan both a nominal and
a robust trajectory. In the latter case, the ODE system is augmented with the
partial derivatives evaluated with respect to the elastic constant c, therefore
increasing the robustness to this parameter.

The four sensitivity functions of the ODE system in (29) are evaluated by
taking its partial derivatives with respect to c:

S1(x, t) =
∂θ̇m
∂c

(30)

S2(x, t) = µrsign

(

∂θ̇m
∂c

)

−
∂Γcoup

∂c

1

Jmn2
+

v

Jm

∂θ̇m
∂c

(31)
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Figure 10: A flexible single-link mechanism

parameter symbol value

motor inertia Jm 2 · 10−4 kgm2

electric motor constant k 0.3 Nm/V
reduction ratio n 50
viscous friction constant v 1 · 10−3 Nm/s
Coulomb friction constant µr 0.5 V
tip mass m 0.3 kg
link length L 0.7 m
link elastic constant c 5 Nm/rad

Table 1: Flexible-link mechanisms: model parameters

S3(x, t) =
∂Γ̇coup

∂c
(32)

S4(x, t) = µrsign

(

∂θ̇m
∂c

)

+ Γcoup

(

1

Jn2
+

1

L2m

)

+

+
∂Γcoup

∂c

(

c

Jmn2
+

c

L2m

)

−
v

Jm
θ̇m −

cv

Jm

∂θ̇m
∂c

(33)

The two trajectories are shown in Figure 11. Both are evaluated using
the cost function J = 1

2u
2 + 1

2 (θm − θt)
2, therefore the resulting trajectory is

minimum torque-minimum vibration.
The response of the system for c = 4, c = 5 and c = 6 is shown in Figure

13 for the nominal trajectory. It can be seen that zero residual vibration is
obtained only for the nominal value (c = 5) of the elastic constant, and that
large residual vibrations occur for both c = 4 and c = 6. The same applies
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Figure 11: Single-link mechanism: nominal and robust trajectory
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Figure 12: Single-link mechanism: nominal and robust control action

to the results shown in Figure 14: again zero residual vibration is obtained for
c = 5, but for c = 6 and c = 4 the amplitude of the residual vibration is reduced
in comparison to the use of the nominal trajectory. The peak amplitude of
residual vibration is shown in Figure 15 as a function of the elastic constant c in
the range c ∈ [1, 9]. It can be seen that the robust trajectory performs better,
in terms of residual vibration for all the values of c taken into consideration. All
the mentioned plots have been obtained by using the optimal control profiles
shown in figure 12.

Again, the improvement of the robustness properties can be evaluated trough
the use of the sensitivity of residual energy to the value of the elastic constant
c. The total energy of the system is:

E(t) = T (t) + U(t) (34)

in which:
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Figure 13: Single-link mechanism: elastic displacement θm−θt, nominal trajectory with c = 4
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0 1 2 3 4
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time  [s]

θ m
 −

 θ
t  [

ra
d]

 

 

c=4

c=5

c=6

Figure 14: Single-link mechanism: elastic displacement θm − θt, robust trajectory with c = 4
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Figure 15: Single-link mechanism: peak residual vibration vs. elastic constant c

T (t) =
1

2
Jmθ̇m(t)

2
+

1

2
mL2θ̇t(t)

2
(35)

and

U(t) =
1

2
c (θm(t)− θt(t))

2
(36)

The sensitivity function under investigation here is the partial derivative of
the total energy of the system with respect to the link stiffness c, i.e. ∂E

∂c

∣

∣

t=tf
.

The values of the sensitivity function is shown in Figure 16 for the range of
c between 2 and 8 Nm/rad. It can be seen that the absolute value of the
sensitivity coefficient evaluated for the robust trajectory is always smaller than
the same quantity evaluated for the nominal trajectory. This result is the same
found for the case of the spring-mass system considered in the previous section.
Therefore also here it can be inferred that the procedure used in this work can
enhance parametric robustness in the sense of residual energy in a rest-to-rest
motion. In this case, similarly to the previous test-case, the minimization of
the sensitivity of the state vector x(tf ) also implies the maximum robustness
in the sense of residual energy. According to eq. (30-32) the minimum residual
energy is obtained for null values of θm− θt, θ̇m and θ̇f . This values correspond
to the rest conditions to be achieved at the end of the trajectory: this implies
that minimal sensitivity at final time implies minimal sensitivity, thus maximum
robustness, of the residual total energy. This evidence is also shown numerically
by the analysis of the function ∂E

∂c

∣

∣

t=tf
whose numerical value is shown in Figure

16.
The results of a spectral analysis on the residual vibrations for several values

of c in the range [2, 8] Nm/rad are shown in Figure 17 and 18, respectively.
The graph in Figure 18 has a less pronounced peak than the graph in Figure 17,
meaning that the worst-case behavior of the robust trajectory is improved by
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Figure 16: Single link mechanism: sensitivity of residual energy to elastic constant c, robust
and nominal trajectory
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Figure 17: Single-link mechanism: fre-
quency spectrum of residual vibration vs.
elastic constant c, nominal trajectory
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Figure 18: Single-link mechanism: fre-
quency spectrum of residual vibration vs.
elastic constant c, robust trajectory
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the robust technique introduced in this paper. Also the ”flatter” behavior of the
graph in Figure 18 around the nominal value of c clearly indicates the reduced
sensitivity of the residual vibration spectral content produced by the robust
trajectory. This features can be effectively used to improve the performance of
the system in the cases that the elastic constant c cannot be estimated with
precision, or in the case when it is perturbed by an unmodeled behavior.

6. Conclusions

In this paper the problem of model-based trajectory planning of mechanisms
is dealt with. The paper introduces a method to improve the robustness of the
resulting trajectory to parametric uncertainties. The method is based on the
use of sensitivity functions. Unlike previous works, the trajectory planning algo-
rithm presented here applies also to nonlinear plants. The improved robustness
is shown in terms of residual vibration in a rest-to-rest motion for an undamped
system, represented by a nonlinear mass-spring model, and for a lightly damped
nonlinear model, such as a very-flexible single link mechanism with Coulombian
friction. In both cases improved robustness is achieved by the method presented
here. In particular, a minor level of residual vibration is achieved for all values
of elastic constant for the mass-spring system and the very-flexible single-link
mechanism.
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[20] Gallardo, D., Colomina, O., Flórez, F., Rizo, R., 1998. A genetic algo-
rithm for robust motion planning. Tasks and Methods in Applied Artificial
Intelligence, 115–121.

[21] Gallina, P., Trevisani, A., 2005. Synthesis and experimental validation of a
delayed reference controller for active vibration suppression in mechanical
systems. Journal of applied mechanics 72 (4), 623–627.

[22] Gasparetto, A., Boscariol, P., Lanzutti, A., Vidoni, R., 2012. Trajectory
planning in robotics. Mathematics in Computer Science, 1–11.

[23] Gasparetto, A., Zanotto, V., 2007. A new method for smooth trajectory
planning of robot manipulators. Mechanism and Machine Theory 42 (4),
455–471.

[24] Hindle, T. A., Singh, T., 2000. Desensitized minimum power/jerk control
profiles for rest-to-rest maneuvers. In: American Control Conference, 2000.
Proceedings of the 2000. Vol. 5. IEEE, pp. 3064–3068.

[25] Holsapple, R. W., 2012. A modified simple shooting method for solving
two-point boundary value problems.

[26] Ibrahim, R. A., 2005. Liquid sloshing dynamics: theory and applications.
Cambridge University Press.

[27] Jenks, R. D., Sutor, R. S., Morrison, S. C., 1992. AXIOM: the scientific
computation system. Vol. 6. Springer-Verlag New York.

[28] Karkoub, M., Balas, G., Tamma, K., Donath, M., 2000. Robust control
of flexible manipulators via µsynthesis. Control engineering practice 8 (7),
725–734.

[29] Kased, R., Singh, T., 2005. Rest-to-rest motion of an experimental flexible
structure subject to friction: Linear programming approach. In: AIAA
Guidance, Navigation and Control Conference, San Francisco, CA.

[30] Kojima, H., Kibe, T., 2001. Optimal trajectory planning of a two-link flex-
ible robot arm based on genetic algorithm for residual vibration reduction.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
Vol. 4. pp. 2276–2281.

[31] Korayem, M., Nikoobin, A., Azimirad, V., 2009. Trajectory optimization
of flexible link manipulators in point-to-point motion. Robotica 27 (06),
825–840.

[32] Korayem, M., Nohooji, H. R., Nikoobin, A., 2010. Optimal motion generat-
ing of nonholonomic manipulators with elastic revolute joints in generalized
point-to-point task. International journal of advanced design and manufac-
turing technology 3 (2), 1–9.

21



P. Boscariol, A. Gasparetto
Robust model-based trajectory planning for nonlinear systems
Journal of Vibration and Control, published online before print February 3, 2015, doi:
10.1177/1077546314566834

[33] Louembet, C., Cazaurang, F., Zolghadri, A., 2010. Motion planning for
flat systems using positive b-splines: An lmi approach. Automatica 46 (8),
1305–1309.

[34] Mamani, G., Andrade-da Silva, J., Feliu-Batlle, V., 2009. Least squares
state estimator based sliding mode control of a very lightweight single-link
flexible robot arm. In: Mechatronics, 2009. ICM 2009. IEEE International
Conference on. IEEE, pp. 1–6.

[35] Panda, S. P., Lu, Y., 2003. Tutorial on control systems design in tape
drives. In: American Control Conference, 2003. Proceedings of the 2003.
Vol. 1. IEEE, pp. 1–17.

[36] Pontryagin, L., Gamkrelidze, R., 1986. The mathematical theory of optimal
processes. Vol. 4. CRC.

[37] Shampine, L., Gladwell, I., Thompson, S., 2003. Solving ODEs with MAT-
LAB. Cambridge University Press.

[38] Singh, T., 2010. Optimal reference shaping for dynamical systems: theory
and applications. CRC PressI Llc.

[39] Stein, W., et al., 2008. Sage: Open source mathematical software.

[40] Tomei, P., 2000. Robust adaptive friction compensation for tracking control
of robot manipulators. Automatic Control, IEEE Transactions on 45 (11),
2164–2169.

22


