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Abstract

In this paper, a novel formulation for modeling the vibratiof spatial flexible mechanism and
robots is introduced. The formulation is based on the caisagfEquivalent Rigid Link System
(ERLS) that allows to write the kinematic equations of motif the Equivalent Rigid Link
System as decoupled from the compatibility equations ofdikplacement at the joint. With
respect to the available literature, in which the ERLS cphbas been proposed together with a
FEM approach (ERLS-FEM), the formulation is here extendedugh a modal approach and,
in particular, a Component Mode Synthesis (CMS) technigllewing to maintain a reduced-
order system of dynamic equations even when a fine discfietidia needed. The model has been
validated numerically by comparison with the results atediwith the Adams-Flé¥software,
that implements the well known Floating Frame of Refere®deR) approach, for a benchmark
L-shaped mechanism, showing a good agreement betweendheddels.

Keywords: Equivalent Rigid Link System , Component mode Synthesisxible-Link
Vibration , Deformation

1. Introduction

In industrial robotics, the demand for high performancesiaigh operating has highlighted
the need to study and develop lightweight manipulators.H@rother hand, due to the dynamic
effects of structural flexibility that arise in lightweight $gms, the design and control are more
difficult and accurate dynamic models are crucial for reachirgffantive result.

In the last twenty years, many researchers focused theiksvan this topic, developing
and refining dynamic models and formulations of the equati@mmotion for multibody rigid-
flexible-link systems. First of all, single flexible-link rdleanisms, then planar and finally spatial
flexible-mechanisms were addressed. This research aecially the 3D systems and their

control, is still an open field of investigation (ShabanaZ,®enosman et al. 2002, Wasfy and Noor

12003,/ Dwivedy and Eberhartd 2006, Tokhiand Azad 2008, Bahi@d 1, Garca-Vallejo et al.

2008/ Ouyang et &l. 2013, Choi and Cheon 2004).

In multibody dynamics, the classical approach is basedendid body dynamical model of
the mechanism, then the elastic deformations are intratitectake the flexibility into account.
Preprint submitted to Journal of Vibration and Control June 10, 2015
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The elastic deformations of the bodies are influenced byithé gross motion and viceversa.
The resultant complete dynamic formulation is a highly muedr and coupled set of partial
differential equations.

In order to obtain a set of ordinaryftBrential equations from these partiaffdrential equa-
tions, thus a finite-dimensional problem, two methodolsdiave been adopted in the litera-
ture, namely the “nodal” approach, i.e. the Finite Elemestidd (FEM), and the “modal” ap-
proach, i.e. the Assumed Mode Method (AMM) (Dwivedy and Hiaed 2006, Dietz et &l. 2003,

Ge et al. 1997, Wang et al. 1996, Martins et al. 2003, Naganaihd Soni 1988, Nagarajan and Turcic

11990/ Theodore and Ghosal 1995, Kalra and Sharan 1991).

Especially in case of large rotations and small vibrati@ptéicements, the most adopted and
well-known formulation, that includes both théect of the rigid body motion on the elastic
deformation and theftect of the elasticity on the rigid body motion, is the so-edlFloating
Frame of Reference (FFR) formulation (Shatiana 1997,/200%)e FFR formulation, a system
of coupled diferential equations is obtained with no separation betweenigid body motion
and the elastic deformation of the flexible body.

By approaching the problem from a robotic point of view, thaimdrawback of the FFR
is related to the constraint conditions since the connedticough mechanical joints between
different deformable bodies is expressed by coupled constqirdtions that do not have an
immediate formulation.

In this work, a novel approach for dynamic modelling of salafliexible mechanisms under
the condition of large displacements and small deformatispresented.

The method is based on an Equivalent Rigid Link System (ERE&}ly introduced in
(Turcic and Midh# 1984b,a, Turcic et al. 1984, Chang and Htarfi1991), that enables to de-
couple the kinematic equations of the Equivalent Rigid LByjstem from the compatibility
equations of the displacements at the joints. Thanks to RieSE:the standard concepts of 3-D
kinematics can be adopted to formulate and solve the systamiatics. In previous works, the
ERLS concept has been exploited together with a FEM appr@RhS-FEM), to model firstly
planar flexible-link mechanisms_(Giovagnoni 1994, Gasiba2001, Gasparetto and Zanotto
12006, Caracciolo et al. 2005) and then 3D systéms (Vidori &ai4,[2 &B%d al.
m). The approach has been also exploited and appliedfdrat purpose 03,
2005, Boscariol and Zanotto 2012, Bosiokisall 2012).

One of the limitations of the ERLS-FEM model is that the numtifieDegrees of Freedom
(DoFs) of the system, which is directly related to the me§iheenent, should be maintained low
if a low computational time and a real-time model-baseddig required.

In this work, the ERLS approach, that can be applied to mashenwith rotational DoFs
or prismatic joints in which one of the links is the groundkiins extended through a modal
approach, in order to obtain a more flexible solution baseh@reduced-order system of equa-
tions. The compatibility with both rotational and prisntajpints is inherited by the use of
Denavit-Hartemberd (Denavit and Hartenberg 1955) proeethr the definition and the solu-
tion of the kinematics of the mechanism.

To the best of our knowledge, this is the first work in which BRLS concept is applied
in order to formulate the dynamics of spatial flexible medtas with a Component Mode
Synthesis (CMS) technique.

In this paper, after the description of the kinematics of HRLS and of the flexible-link
mechanism (Sectidd 2), the mainfférences between the ERLS and the FFR formulations are
highlighted (Sectiofil3). Sectidd 4 deals with the derivatd the virtual work term contribu-
tions while Sectio}5 collects theftrent terms into the equations of motion. The numerical
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Figure 1: Model of the mechanism and kinematic definitions

implementation of the model and its validation is given it®m[@ through a comparison with
the Adams-Fle®'multibody dynamic software for a benchmark flexible meckami

2. CMS and ERLS kinematics

Let us consider Figld1, which shows the kinematic definitiamsrepresents the nodal dis-
placement vector of thigh link, g is the nodal position vector for thHéh element of the ERLS
andp is the absolute nodal position vector. The indepans from 1 td, wherel is the number
of links of the mechanism.

Given the definition of the vectors above, the following reld

p=e+u ()

Let us express the nodal displacemantsf thei-th link as functions of a given number of
eigenvectord); and modal coordinates, namely

ui = Uiq; (2)

Eigenvectors and eigenvalues can be calculated accordittgetchosen modal reduction
approach, e.g. the Guyan reducti@OM). With resjpeittet previous ERLS-FEM for-
mulations, that usually deal with flexible beam type linke tnodel extension through a modal
approach will allow to work with whatsoever flexible- or mgilink shape and finite elements.

Assumption 2. The CMS theory requires to choose the modal coordinates in such a way that
they comprehend all the modal coordinates related to the rigid-motion of the link, plus at least
one modal coordinate related to the main vibration mode of the link.

If a link is assumed to be rigid, only eigenvectors relatethtorigid-motion are considered
(6 eigenvectors for the 3D case, 3 eigenvectors for the 2B)cas
Let(; = Su; be the displacements of the joint belonging to the liakddG;,; = S1Uj,1 the
displacements of the joint belonging to the linkl, where matrice§ andS.,; are introduced
3
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] Table 1: Main Nomenclature
explanation

Uy, U

~XxT8>06Ze IS

—h
@

nodal displacement vector of theh link

nodal position vector of theth link

absolute nodal position vector for theh link

eigenvectors of thé-th link

modal coordinates of thieth link

matrix for the selection of the joint displacements amorgrtbdal displacements
local-to-local transformation matrix between the locdérence frames af-th andj-th link
vector of joint positions

matrix of compatibility relationships

vector of rigid-motion modal coordinates

vector of elastic modal coordinates

partitions ofC

matrix of relationships between vibrational modal cooatés and rigid-body modal coordinates

vector containing the partial derivatives matrice€Cokith respect to the rigid DoFs as defined in eq. (13)
def

= -C/(9)E(0. a)

local-to-global rotation matrix for the whole mechanism

velocity of point X

acceleration of point X

matrix of relationships between the linear velocities aéthnon aligned nodes with respect to
the velocity of the first one (see appendix A)

rigid-body and elastic mode eigenvectors, respectively

matrix of angular speeds for the whole mechanism

vector of virtual rotational displacements

mass matrix

matrix of absolute rotational displacement

skew symmetric matrix of absolute angular velocities

skew symmetric matrix of absolute angular accelerations

skew symmetric matrix of virtual rotational displacemerggresented in the local reference frame
elastic energy of each link

stiffness matrix of each link

diagonal matrix of the squares of natural frequencies dfi éak

vector of gravity forces

vector of gravity acceleration components expressed itottad reference frame

matrix of i; components (see Appendix D)

vector of generalized forces acting on each link

virtual work

submatrix ofUu

Jacobian matrix of the ERLS

block diagonal selection matrix used in eq. (69)

matrix that relates the vector of the independent DoFs wkighoverall system DoFs the used in eq. (69)
selection matrix for the elements independent form virtligphlacements and accelerations
submatrix ofl elements independent from accelerations

selection matrix for the elements independent form virtligphlacements and accelerations
for the whole mechanism

submatrix ofl elements independent from accelerations for the whole arésim

absolute angular velocity

absolute angular acceleration
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just to extract the proper joint displacements from all tbdad displacements;, hence they are
made of "0” and "1” only.

In terms of modal coordinates, the joint displacements aendoy: 0; = SU;q; and (i1 =
Si+1Uiv10i,q

The following equation accounts for the compatibility c@iwh at thei-th joint:

Oiv1 = TireiG (3

whereTi.1;(0) is local-to-local transformation matrix between the tvederence frames of the
ELRLs associated to the two consecutive Ilmlede—Tl Transformation matrices are function
of the joint parameters vectér= {61 6, --- ) .

Eq.[3 can be rewritten as:

S+1Ui+lqi+l = Ti+l,i(0)si Uicli (4)

[ _Ti+1,i(0)sui | Si+iI.Ui+:I_ 1%: 0 (5)

Since the equations inl(4) (one for each joint) are linean véspect to the modal coordinates,
the following comprehensive compatibility equation carabsembled:

or

C(0)q=0 (6)
where:
S,Up 0 .. .. .. 0
~T12(6)S1U1 U, 0o - 0
0 -T23(0)SU> SUz 0 e 0
co=| o0 0 0 @
0 0 0 0
0 =Tn-1n(@)Sh-1Un-1 SiUn
0 0 L. e 0 *Tn,n+1(0)31un
and T
a=[a’ @ - ] ®

Note that the co@icient matrixC depends only on the joint parameters and thabntains
both the rigid-body and the elastic modal coordinates.

As far as the ERLS mechanism is considered, the total numbBobs of all the links
without constraintsn is related to the total number of DoFs of the ERLS mechamighrough
the relationship

m-v=n 9)

The numbers of rows df equals the number of constraimtenposed by the joints. The number
of columns equals the total number of modal coordinatessgi/en by the sum of the number
of the rigid-body modal coordinates and the number of the elastic modal coordinate&or
eq.[8, the dimensions & arev x (m+ d) = (m-n) x (m+ d). Therefore, the linear systefd (6)
is underdetermined and the solution is of the forfft,



107

108

109

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

All the rigid-motion modal coordinates and the elastic mazteordinates can be gathered
respectively into two separate vectagsand gqq. Thus, the systeni6) can be rearranged as
follows:

Cg +Cy0q=0 (10)

wherein the submatri,; has dimensions x m andCq has dimensions x d. Note that,
because of e]9,< m, i.e. the number of unknowns is greater than the number cdtéms.

By using the right pseudo-inverse® = C/(C,Cl)! (Ben-Israel and Greville 2003), the
system[(ID) can be solved with respecttpnamelyq, = —C;Cyqy. In this way, the minimum

norm solution is chosen for the unknownvector. Eventually, introducing a new matiix6) = <

—C/(#)Cq4(0) itis possible to represent the vibration modal coordisatefunctions of rigid-body
modal coordinates and joint parameters (ERLS coordinates)

q- = D(0)qq (11)

It should be remarked that, according[fal(11), the rigidybmadal coordinates are function
of @ and gy only. Note that, ifgy = 0 theng, = 0. In other words, if all the links are assumed
rigid, the remaining DoFs are the ones of the ERLS.

According to the literature, the selection of the intericvdes to be retained to keep model
dimensions to a minimum while preserving system responeeracy is still an open field of
investigation; indeed, the choice of the reduction sthatagd dimension of the reduced-order
model is generally Ieft to the experience. Often, only thedpfrequency modes are retained. In

idt 2008 dnd Besselink G122 comparison of model reduction
techniques have been made. Recently, a new approach baaaedearrgy-based cfirient has
been proposed for resonant systems by Palombal et al. 2014is Mork, in order to be able to
compare the results with the FFR AddMsmplementation (see Sectifh 6), a classical Craig-
Bampton approach (Craig and Bampton 1968), where the lowguéncy modes are retained,
has been adopted.

2.1. Derivativeterms

In order to implement the dynamic analysis of the completehaaism, it is necessary to
derive all the velocity and acceleration terms as functafrés g, and their derivatives.
By differentiating ed.J6 with respect to time, it yieldsg + Cg = 0 which can be written as:

oc .,
Zk: 55 W+ CA=0 (12)

Let us define:

E0.q) % [@ 3—;q] (13)

By replacing [IB) into[(112), one obtaing&e + Cq = 0 and, after splitting the cdicient
matrix C according to[{ZI0) [{112) becom&® + Cyyy + C ¢, = O.

The previous equation can be solved with respect to the-rigitlon modal coordinate
derivative terms by exploiting the pseudo-inverse, namely



def

139 G = -CCygy — C E6. The final equation is obtained by introducing the ma@{#, q) =
140 —C:’(H)E(H q)

g = D(6)gy + G(6. )0 (14)

11 which expresses the relationship between the velocitiéiseofigid-body modal coordinates
12 and the velocities of the independent variables. The eguatan be represented in terms of
w3 Virtual displacements:

6q, = D(0)dqy + G(6, g)s0 (15)
us  2.2. Acceleration terms
145 By differentiating twice ed.]6 with respect to time, one obtains:
Cq+2C4+Cg=0 (16)
146 The second derivative of the déieient matrix is :
= aak Z Z a0 aa Z %9" (7
147 Let us introduce the notations:

h(6, 6, q) = [ ,Gk] (18)
Z]: Zk: 06,06y
us and
c(0,6,d) £ Cq= (Z 679.(] (19)
149 Multiplying both sides of ed._17 by and using[(IB3) and(18), it yields:

Ca=h(6.6,q) + E(6, q)6 (20)
150 Replacing eq/s716 and19 ifia]20, the second derivative @ egn be written as:

h(6. 6, q) + E(8, q)8 + 2¢(6, 6, ) + C(6)§ = 0 (21)

151 By splitting matrixC according to ed._10 and solving the resulting system witheestod,,
12 the acceleration of rigid-body modal coordinates as flamgtiof the independent coordinates is
153 computed:

G- = —C; (6)h(6. 6, 9) — C/ (B)E(0, Q)8 — 2C; (6)c(6. 0, §) — C/ (6)Ca(6) tg (22)
154 By adopting the notation:

n(a’ 97 q7 q) dzef _C;r (0) h(a’ 97 q) - 2C;r (0) 0(07 9» q) (23)

155 eq.[22 can be rewritten as:

= G(68, )8 + D(8)dy + n(6. 6. q, G (24)
7
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3. Differences between the ERLS and the FFR formulations

It is now possible to enumerate thefdrences between the ERLS and FFR formulations.

1. In the FFR approach théh deformed body does not present rigid displacements with
respect to théth link, in the sense that there are not rigid motions of thi@aeed body
with respect to the local reference frame. On the other hagd displacements are
required for the ERLS approach: they are defined by the valtihse rigid-body modal
coordinates.

2. In the FFR case, joint parameters and deformation modia¢sare coupled in thidne-
matic equations. Indeed, the constraint equations depend both on theetEftormations
and on the reference motion of the elastic bodies. In thevatpnt Rigid Link System ap-
proach the&kinematic equations contain just the joint parameters, since deformation modal
values are present in the compatibility condition at thatgi This means that, as high-
lighted in previous works e.g. Vidoni etlal. 2013, #irematic equations of the ERLS are
decoupled from the compatibility equations of the disphaeat at the joints.

3. As a consequenceldf 2, if a closed-form solution ofkiimematic equationsis available, it
can be employed without resorting to iterative algorithmgedures.

4. Moreover, thanks td] 2, for the ERLS approach the choicaadpendent variables is not
problematic as it is, on the other hand, for the FFR apprcaehtated il (Shabaha 2005).

5. The ERLS approach allows to work directly with a classidahavit-Hartenberg (Denavit and Hartenberg
@) formulation as well as to cope with the flexible-linkot as if it were a rigid-link
one.

4. Virtual work contributions

4.1. Virtual work of inertial forcesfor a single link

Let us drop, for sake of clarity, thesubscript which indicates the link to which each vector
refers to. Letp be the vector containing the global coordinates of all theéesmof the link e the
vector containing the global coordinates of all the nodésrizgng to the ERLS and the vector
containing all the nodal displacements. These vectorsfgdlie equation

p=e+u (25)

according to notation of ed.] 1. Note that all terms are represl with respect to the global
reference frameu can be expressed on terms of modal coordinates by the redatjp

u=RUq (26)

where the matriR contains on the main diagonal the blocks of the local-tdeglootational ma-
tricesT;. Thus, the nodal virtual displacements and the secondati@of nodal displacements
are

ou =6RUQg+ RUsq (27)

i = RUg+ 2RUG + RUg (28)

In order to compute the virtual displacements and the ai@a related to the ERLS, it
is necessary to introduce the general formulation of vefaid acceleration of a generic point
associated to the rigid-body, i.e. to the link of the ERLS.

8
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For a pointP, the velocity and the acceleration measured with respecptmintO are:

Vp=Vo—-(P-0)Aw (29)

Pp=a-(P-O)ra+wA(vp—Vo) (30)
Let us choose threefiierent non-aligned nodes, identified by the subscripts 0d12ahe

velocities of the last two nodes with respect to the first ome & = vo — (P1 — Po) A w and
Vo = Vo — (P2 — Pp) A w; using a matrix notation, the following holds:

Vo v
_5|Vo
vi|=B [w} (31)
\

whereB is a 9x 6 matrix defined in Appendix A.

The matrixU can be split into two blocks: the columns of the first one aeerthid-body
mode eigenvectors while the columns of the second one adefleemation mode eigenvectors:
U=[Ur | Ug|

Let us extract from the matrid, the submatrixJ, whose rows contain just the components
related to the nodes 0,1 and 2. Singeis made with rigid-body mode vectors, there exists an
unknown vectox which satisfies:

Vo
Vi
V2

By equating eq.531 arfld132, and using the left pseudo-intersétain the solution that

minimizes the norm of the errdr (Ben-Israel and GrevVille 20@ yields:

Vo
w

= U,x (32)

X = é[ (33)

where:B = (0] 0,)10, B.

By means of the matrikJ, introduced in egl_26, all the velocities of the nodes beloggo
the ERLS (expressed with respect to the reference frameedirtks) are obtained as a function
of the velocity of node 0 and the angular velocity vectorhie form:

é=RUB [‘:3] (34)

Note that the matrixB is defined by the link geometry and by the eigenvectors. Tiis,
constant and can be calculated once at the beginning ofrthéagion.
Let us express the acceleration of nodes 0,1 and 2 as the i twfo contributes:

a = ay+ &
a = a) +a) (35)
2 = a + al

The first term represents the contributions of the acceter&br null angular velocity; the second
one represents the components due to the angular velodity @onsidering than{) = ao,
9
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a'l =ag—(P1—Po) A anda,'Z = ag — (P2 — Pp) A @, the nodal accelerations for null angular
velocity are

¢ = RU,B ‘(ﬂ (36)
The contribution to the nodal accelerations due to the amgalocity is
¢' = RQU é[o] (37)
i P

The matrix@ contains on its main diagonal the skew-symmetric matrieegiven by the
components of the angular velocity expressed with respetité link reference frame. The
centripetal contribution has been obtained by applyingréfationshipw A (vp — Vo) = w A
[-(P - 0) A w] to all the nodes of the link.

By adding all the contributions due to the nodal accelenati@q.§ 36 ard 87), one obtains:

=l

g=¢ +é&' =e=RU,B
a

(38)

. ﬁﬁuré[o
w

def

The last equation can be simplified by introducing the marix . The lower block of

0
B is made of a number of null rows equal to the number of elastidahcoordinates of the link.
Moreover it is explicitly assumed that the columns of theeeigectors matriXtd (from left to
right) are increasing value of the corresponding eiger@slu

Note thatU, B can be written at)B; thus, eq.534 arld B8 can be rewritten as:

&= RUB ["O] (39)
w
&= RUB|% +§§UB[O] (40)
o w

From eq[3D, the virtual displacements of the nodes of theE&ie:

§Po
o

Eventually, sincefp = de+ éu and p = & + (U, the virtual displacements and the absolute
accelerations of the nodes are:

se= RUB [ (41)

5p= ﬁus[‘zzo + 5RUQ+ RUSq (42)
= Jao| == _[0] = = o
p=RUB|%®|+RaUB|D|+RUg+2RUG+ RUY (43)

Let M be the mass matrix expressed with respect to the local refereame. The virtual
work done by the inertial forces is:

OWinertia = —0 pT ﬁM §T p (44)
10



234 or, introducing eq.542 and¥3:

-
Minertia = —(69"UT + qTUTSR'R + 9Po BTUTM
od
(45)
| & 0| 57g5 STS - y
(uB o +QUB ol t R RUg+ 2R RUQg+ U{)
235 The terms’R’ R, R'R andR" R can be written as (see Appendix B):
SR'R=60'R'R=QandR'R=A-Q'Q (46)
23 where:
0 -w, wy 0 -a; oy 0 -0¢;  Ody
Q% w, 0 -wy|,AZ|a; 0 -—ax|lands®@E|sp, 0 —6px| (47)
—wy Wy 0 -y ay 0 —0dy  Opx 0

237 5¢x.0¢yandée, are the virtual rotational displacements of the link. Usigd 48, the virtual
s work of inertial forces given by (45) can be simplified:

.
MWhneria = —(6q"UT + q"UT60' + ‘5P°] BTUT)M
o¢
. (49)
(UB|®|+QuUB| |+ (A-Q'Q)Uq+20U4+Ud)

20 By computing the products between the virtual displacesand the inertial forces, one obtains:

T
5P0 T dg
5¢] B'U ' MUB o

;
Po| o1 maur!©
(5¢] B'U ' MQUB o

2
a

ao

+q'UTs®' MUB
o

—Winertia = 69" UTMUB +

0

+5q7U™MQUB|°| + TUTsd MQUB .

w

+

0P
o
o0Pg
o

0Po
o

20 Now the virtual work can be split into two sectioti®Vinetia = Wi giia + OWineiar the former
2 containing all the terms related to the second derivatiih@fvariables, the latter containing all

2«2 the remaining terms.

.
+5q"UTM(A - Q' Q)Uqg+ q'UTs@ M(A - Q' Q)Uq + ] BTUTM(A-Q'Q)Uq  (49)

s
+26q"UTMQUG + 2q"UT6@' MQU{ + 2 ] BTUTMQU{

T
+6q"UTMUG + q'UTs®' MUG + ] BTUTMU§

.
do —T ) oP, A
~Wiia = 69’ UTMUB |21 + q"UT6® MUB| |+ 6¢°] BTUTMUB[Q]
— — — 5P T —
+6q"UTMAUq + q'UTs@' MAUQq + 5¢° BTUTMAUq (50)
- 5P|
+6q"UTMUG + q'UTs®' MUG + 6(;] BTUTMU§

11



~ [0 —r = 0] [sP|" ~ [0
W i = —6q"UTMQUB w] -q'UTsd MQUBL)] - [5¢0] BTUTMQUB[w]
T
+5q'UTMQ' QUq + q'UTs@' MQ' QUQq + ‘is';"] BTUTMQ'QUq (51)
= —r. = 5P| —
—25qTUTMQU(q—2qTUT5¢TMQUQ—2[6¢O] BTUTMQU(
23 The single terms of the last two eq.s are developed in Appeddi

a4 4.2, Variation of elastic energy for a single link
245 The elastic energy of a link is given by = %uTKu. Therefore its variation is:

6H = 6u"Ku (52)
26 Sinceu = Uq, the variation of elastic energy becomes:
6H =6q"UTKUq =69'T'q (53)

27 Where the matriX'is a diagonal matrix whose components are the squares oatheahfrequen-
s Cies. Considering just the submatliy corresponding to the non null eigenvalues, it is possible
29 1O Write:

6H = 60T a0 (54)

0 4.3. Virtual work of gravity forcesrelated to a single link
251 The virtual work done by the gravity forces is:

oWy = 6p' (55)

= Wwheref are the gravity forces. The virtual displacements can b#emras:

5p= RUB [‘5520 + 6RUQ+ RUSq (56)
;s and the gravity forces as:
fy= RM@ = RM(i10x + i2gy + i39;) = RMI g (57)

T . .
»  Whereg, = {gx, Oy, gz} represents the gravity expressed with respect to the lfrdese. Vectors

s 1; are defined depending on the nature of the nodes (See Apphdix
256 Replacing ed. 836 arld b7 infal55, produces:

.
oW = ([6620} BTUTR' +g"UT6R" +6q"UTR))RMIg (58)
257 or.
5Pl - STt i
oWy = [5450] BTUTMig +q'UTé® Mig +oq"UT Mg, (59)

12



256 The first term of ed._89 can be written as:

T T
0Po| ot Tmie — [OP0| gT
259 where:
Q,=U"MI (61)
260 Part of the second term can be written as:
UT6®" MT = UT (66,A; + 66y Ay +66.A5) MT )
= 0¢1Qq + 6¢2Q; + 6¢3Q3
2w where:Q £ UTAIMT, Q, £ UTAIMT andQ, £ UT AL MI.
262 The third term can be written as:
69"U"Mig = 69" Q,q, (63)
s 4.4. Virtual work of the resultant generalized forces (forces or torques) acting on the link
264 The virtual work done by a generalized fortés:
W = 6p' f (64)
s Where the virtual displacement is:
~ 6Py N N
op=TU:B 56 +6TUrq+ TU+6q (65)
266 In this caseU; is a submatrix ofU. Its rows are the rows of) related to the DoFs the
27 generalized force is applied to.
268 Let us define the generalized force vector whose componenteterred to the local link’s

w0 reference ad|. The relationship:f = Tf, holds true. Therefore the virtual work done by a
a0 generalized force can be written as:

T

SW; = ([6520 BTUIR" + q"0{6R" +sq" U] RT)TH, (66)
onn O
5Po|" AT AT T
SWi = [&;} BTU;f, +q"Us6@" f, +6q"U; f, (67)

on According to [4Y), the second term 6f{67) has the followiomf:

qTO-:&(DTflz
0 0 O 00 -1 0 1 0 (68)
T AT T AT TAT
5¢1q Uf O 0 1 f| +6¢2q Uf O 0 0 f| +6¢3q Uf _1 0 0 f|
0 -1 0 1 0 O 0 0O

13



a3 5. Equations of motion

274 When dealing with a multi-body system, the obtained forriatashould be managed to
25 Obtain compact motion equations expressed in terms of tbhelerations of the DoFs of the
276 SYyStem.

o7 Thus, by exploiting eq5S1 1,115 ahdl 24, the virtual terms efdenerid — th link can be
28 rewritten as:

5Poi J(0) 0
Vg O 60 60
59, | = [ o v ] G(6,) D(6) [5q ] = VN [5q ] (69)
6q 1o | d d
219 where J () represents the Jacobian matrix of the ERLS, andvtha selection matrix for

20 the proper elements of the- th link. The VY matrix is block diagonal and allows to select the
2 correct terms related both to the rigid DoFs and to the inddest vibration modal coordinates.

282 Also the acceleration terms can be rewritten as functioh®fttdependent variables:
@ |=VIN|. |+V?|n(6,6,q, 0 (70)
. Jd
q 0
283 whereJ (6, 6) represents the first time derivative of the Jacobian mafrike ERLS; the sec-

2 Ond term of the equation depends only on the position anctitglof the independent variables
s and is thus known.

286 In such a way, all the terms of the- th link are expressed as functions of the independent
27 Variables and can be easily added and computed.
268 The virtual work done by the inertial force®\; ;,; andéWi. ... of each link, and the

20 Virtual works done by the gravitationa¥\y and generalizedW; forces, can be reformulated in
20 @ Mmore compact form. Namely, by gathering in thematrix all the terms not depending on the
21 Virtual displacements and accelerations, the contribugiven bysWi, .., becomes:

aoi
~Wheria = 0P 04 o7 Li| e (71)
q
22 Now, by substituting ed._69 and dq.] 70, it holds:
P J6.6)6
~Whneia; = [067 60 |NTVITLI(VIN| o 1+ V7 |n(©0.6.,6) ) (72)
0
203 ThesWi. ., term can be expressed by gathering inlthmatrix all the terms not depending
24 ON the virtual displacements:
Wieriai = [0P5 087 oaT]li =[s67 a5 NV, (73)
295 Now, since the second term in €q] 72 does not eventually demethe virtual displacements,
26 it can be included in thg matrix.
207 All the other terms, i.e. the variation of the elastic eneftly(eqls4), of the gravity forces

28 6Wy (eq.[60[6P and 63), and of the resultant generalized fatdgs(eql6T) do not depend on
14
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Figure 2: L-shaped mechanism: reference frame and nodestiistion

accelerations and can be gathered into the right hand tethreafynamic system equation; for
sake of clarity, the matrikwhich now includes all these contributes will be nanhed®y naming
6W; the term which includes all the contributions not dependingccelerations, we obtain:

oW = [oPg o oq"|Ti=[o0" oqf] NTVIT (74)
By adding up all the links contributions, the following edjoa is obtained:
N 0 J(6.6)
~Wigia = . [067 60T NTVETLI(VEN | n(6. 6. g, §)
0

. +V?
izl Yo

)=

N
=W = Z [s67  sof| NTVT
i=1
Finally, by lettingL = YN, VOTL;V° andl £ 3N, V°TT;, and discarding the virtual displace-
ments, the final model representation is obtained:

J6.6)0

NTLN[gd}z NT[—Li n(é. 6, q, q)
0

+ T] (75)

6. Numerical implementation and model validation

A MatLab™ software simulator has been implemented in order to test@wdlidate the
dynamic model presented in the previous Sections. A L-sthbpachmark mechanism has been

chosen|(Gasparetto eflal. 2013), as in Elg. 2. The partishigpe of the system has been chosen
to allow a 3D motion of the mechanism, i.e. to induce motiod aibbrations in dfferent direc-

tions, and not only on a plane as often made in literature(Besvedy and Eberhalld 2006).
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Table 2: Geometrical and mechanical parameters of the peshmechanism

Elem. | Material | Length | Depth | Width | Densityp | Poisson’s| Young’s m.
[m] [m] m] | [kg/m’] ratio [N/m?]
1 Steel 0.5 0.03 | 0.01 7800 0.33 2¢tt
2nd Steel 0.5 0.03 | 0.01 7800 0.33 2¢tt
an The results have been compared with those provided by Atafosthe same mechanism.

a2 Itis well known that the Adani¥! software uses a Floating Frame of Reference approach and a
as - Component Mode Synthesis technique based on the Craig4®ampethod where the DoFs of

a.  the system are partitioned into boundary and interior Dafeksthe formers are exactly preserved
as  When higher order modes are truncated and the system diomeresiuced (Craig and Bampton
316 )

a7 In AdamdM, the link flexibility is imported and loaded through a spééia, i.e. the modal

as  neutral file. Thus, firstly the links have to be modeled andiredsn a computer-aided engineer-
a9 INg simulation software such as An&ysand then the proper file generated. For this purpose a
20 special toolbox is available in Ansys(ANSYS[2011).

a1 In the ERLS-CMS model under consideration, a similar apghi@an be used. Indeed, to set
a2 Up the significant terms of each link such as, for instanggereiectors and eigenvalues, the same
w3 files based on the Craig-Bampton reduction that Adahuses to import the link flexibility can

24 be exploited for the formulation under evaluation. Thus,édbmparison can be made being sure
@»s that the two approaches work with the same kind of modal réaiuc

a6 The L-shaped mechanism chosen for the tests is made of twbl8ewds and can be con-

s sidered as the 3D version of the classic single-link planechmnism adopted as benchmark in
»s Other approaches limited to a 2D motion.

2 6.1. Test 1: convergence of the solution

330 In the first numerical test the convergence of the solutiothefERLS-CMS model imple-
s mented in MatlaB has been evaluated; the main geometrical and mechanieahpters of the

w2 tested mechanism are reported in Table 2.

a3 Since the L-shaped system can rotate only around its y-egisit has one rigid DoF, due
xs  to the chosen mechanical and geometrical parameters, defiatinations but large rotations are
s takeninto account. In Ansyd the link has been modeled with four Euler-Bernoulli beanashe

s beam has two nodes and six degrees of freedom, thus the wieckeamism link has five nodes
s and thirty eigenvalues. The modal neutral file has been byitthoosing as interface nodes the
s first and last node of the L-shaped mechanism and exportimgdis over the 30 available.

339 The motion is simulated under gravitg & 9.81 m/s?), without friction and damping, by
o releasing the mechanism from the horizontal 0 deg) position. The chosen solver was a
su modified Runge—Kutta algorithm. Figures 3(a) and |3(b) shiwevZ motion of the elbow and
x2  Of the last node of the L-shaped mechanism with respect totingber of considered modes,
us  respectively. In TablEl3, theand the & and 8" node coordinates at a specific time, i.e. 0.5 s,
s are reported. As can be seen from the results, the compassomv the converge of the solution
us  and the system behavior by changing the number of consideoees.

a6 With a number of 6 modes only the rigid behavior is simulatgdconsidering more modes,
awr  the elastic behaviour is taken into account. By increasiegiumber of modes, the convergence
us to the solution obtained through the FFR model can be acthjes highlighted by the results

16
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Figure 3: L-shape mechanism: Z-coordinate of the mechaelbow (a) and of the mechanism tip (d) with respect to
the number of selected modes.

Table 3: Comparison dd and the & and 3" node coordinates at0.5 [s]

mode ® 3rd 3rd 3rd 5th 5th 5th
N X-coord | Y-coord | Z-coord | X-coord | Y-coord | Z-coord
deg [m] [m] [m] [m] [m] [m]
6 125.90| -0.2931 0 -0.4050| -0.2931 0 -0.4050

8 115.30| -0.2139 | -0.0357 | -0.4520| -0.2607 | 0.4643 | -0.5509
10 | 114.30| -0.2061 | -0.0491| -0.4555| -0.2596 | 0.4509 | -0.5735
12 | 114.25| -0.2044 | -0.0500 | -0.4563| -0.2615| 0.4500 | -0.5741
14 | 114.20| -0.2027 | -0.0509 | -0.4571| -0.2635 | 0.4491 | -0.5766
16 | 113.50| -0.1970| -0.0637| -0.4596 | -0.2626 | 0.4491 | -0.5955
18 | 113.50| -0.1970| -0.0637| -0.4596 | -0.2626 | 0.4362 | -0.5955
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presented in the next section. Anyway, a general rule fochioéce of a suitable number of nodes
can be made according to the bandwidth of the actuator, bsidering that the dynamic model
of the flexible system should reproduce witHfgtient accuracy all the modes that lie within this
limit. This rule, which is commonly applied, is based upoatct that a mode cannot be excited
if it lies beyond the bandwidth of the actuator.

6.2. Test 2: comparison of the ERLS and FFR approacheswith respect to the number of consid-
ered modes

In order to show the behavior of the ERLS-CMS formulationdaspatial mechanism with
respect to the FFR-CMS, a first comparison between the Mdtttabmulator and the Adariiy
software has been performed. The simulation lasts 2 secamdighe L-shaped mechanism
has been evaluated under gravity, in absence of frictioorales and damping, starting from
a 0 degree condition. The chosen solver was a modified Runge-Klgorithm and in a first
simulation a modal neutral file with 18 modes has been coreidehile, in a second simulation,
a modal neutral file with all the 30 modes has been used. ABamasults are presented taking
into account all the modes present in the modal neutral filshduld be highlighted that high
order modes are included just to show the agreement betweemovel dynamical model and
the FFR formulation. It is known that analytical models aftein incapable of describing with
accuracy the behavior of a flexible system at high frequencie

Figure[4(d) show the Y- coordinate of the last node of the &psil mechanism with respect
to the number of considered modes, up to 30. In Fifure 4(b)agnification of Figur¢ 4(%)
around 1.2 s is shown. It can be seen that the results probigdte ERLS-CMS approach are
in good agreement with those given by Adaand how the signals overlap almost perfectly.

Regarding the computing time needed to solve the dynamiersysince the two approaches
are implemented in étierent software, i.e. Matld¥ and Adam® , at the actual stage it is not
possible to make a proper comparison between the two. Indsedgeneral consideration, it can
be said that, since the ERLS approach is implemented in soptimized code, the simulations
take comparable computing time in case of a low number of medele, by adding modes with
relative high frequencies, the Adaf¥ssimulation time becomes lower.

By looking at the previous ERLS implementation, since th& f@mulation allows reducing
the number of DoFs of the considered system with respectad=RLS-FEM approach, the
computational time required decreases. Indeed, it is hidapendent on the number of DoFs,
now the number of kept modes and their frequency; the chdicheoselected modes could
be made in dferent manners and if only the lower frequency modes are aingd, a faster
integration time is required for finding the solution of thendmic system.

6.3. Test 3: comparison of the ERLS and FFR approaches under a torque input command

In order highlight the vibrational behavior of the L-shapiedk in terms of frequency and
shape of deformation, the mechanism response to a torque gs been simulated and the
results compared with AdarfThe geometrical and mechanical parameters of the mechanism
and the input torque signal have been chosen as in [able 4igneeB Gasparetto etlal. 2013,
and the simulation has been performed without any frictioh @amping. Extra inertias and
a concentrated mass have been introduced in order to takedcbunt the motor, i.ely, =
0.004%gn? and shrink disc, i.elc = 0.00126%gn?, inertias and the elbow articulation mass,
i.e. 0.017 kg. The input signal allows, from a staticallydraded configuration at 135to fast
accelerate and decelerate the L-beam, according to thee@mfile reported in figuifg 5.
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Figure 4: L-shape mechanism comparison: Y-coordinateeofitechanism tip (a) and its magnification at abeut 2 s

(b).

Table 4: Geometrical and mechanical parameters of the pezhmechanism under an input torque signal
Elem.| Material | Length| Depth| Width | Densityp | Poisson’s| Young's m.
[m] m] | [m] | [kg/m’] ratio [N/m?]
1 Aluminium 0.5 0.008 | 0.008 2700 0.33 7€'
2nd Aluminium 0.5 0.008 | 0.008 2700 0.33 7€t0
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Figure 5: Input torque signal.

As for the previous results, the link has been modeled in Aiswyith four Euler-Bernoulli
beams, the modal neutral file has been built by choosing edaice nodes the first and last node
of the L-shaped mechanism and by exporting 18 modes oveithgalable.

Figurd® shows the elbow Z-coordinate position comparidimeolast node of the first part of
the L-shape mechanism, i.e. the elbow, between the sindueR: S-CMS and Adanm¥ while
Figured¥ anf[l8 show the elbow Z-coordinate acceleratiohertime and frequency domain,
respectively.

As can be seen in Figulé 8, the ERLS-CMS and Adahsggnals match very well each other
and the main frequencies of the mechanism under test, i,811113, 171 Hz, are captured and
properly simulated.

Conclusions and future work

In this paper an Equivalent Rigid Link System (ERLS) forntigda is extended with Compo-
nent Mode Synthesis (CMS) to develop a novel dynamic modspafial flexible mechanisms.
After the definition of the model kinematics, the dynamic &tipns coupling rigid body and
flexible body motion are obtained and discussed.

The model has been implemented and numerically validatesbbyparing its response with
a commercial simulator based on the FFR formulation. Thistperformed both under gravity
and under a forced torque input, show a good agreement betiveeaesults, thus proving the
effectiveness of the proposed dynamic model.

Future work will be devoted to further validate the modebthgh experimental tests both on
a L-shape and on another benchmark mechanism with at leasigid DoFs.
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as  APPENDIX A: B matrix.
. 0 -c b
a19 Using the skew-symmetric matrixdefiniti({fa b c}] £lc 0 -a|lemployed for
X
-b a O
w20 Cross product operation,
I 0
B=| I | [-(PL—Po)|, (1)
I ,_(PZ_PO),X

= APPENDIX B: Development of the terms involving rotational matrices.

Let us find a new formulation for the terms containing thetioteal matrix, namelysR' R,

422

#s R RandR'R. The following eq.s hold true:

RT=1, R"R=QandRTR+ R R= A (.2)
424 where:

0 -w;, wy

Q= w, 0 -wy (.3)
—Wy Wy 0

425 and:

0 -a, o

AZ|a, 0 —ay (.4)
-y ay 0
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are skew-symmetric matrices referring respectively taatbsolute angular velocity and absolute
angular acceleration of the link.

SinceR'R=QTTTTQ = QTQ, it yieldsRTR = A~ QTQ . MoreoverR = TQ , and thus,
0T = Téd, where:

0 —6¢; o¢y
SOE|6p, 0 —6py (.5)
~6¢y Sk O

is a skew-symmetric matrix; its components are the virteghtional displacements ex-
pressed with respect to the local frame of the link. By pratiplying the previous eq. by
5TT, one gets:
ST T=60"T'T=060" (.6)

In conclusion, extending the results to the mafxwhich contains on its main diagonal the
single rotational matrices referred to each link, one gets:

SR'R=6®  ,R'/R=QandR' R=A-Q'Q (7)

APPENDIX C: Development of the constant inertial matrices elated to a single link

The terms related to the inertial matrix of &gl 50 51 cawiiteen as:

UTMAU = UM (axA; + ayAg + a;As) U (.8)
0 0 O 0 0 1 0 -1 0

where: A; £ 10 0 -1/, A, £|0 0 0O andA; £ |1 0 0. By introducing the
01 O -1 0 O 0O 0 O

notations:X; = UTMA;U, X, = UTMA,U, and: X5 = UT M A3U eq.;8 becomes:

UTMAU = axX1 + ayXa + ;X3 (.9)
Following the same reasoning, the tetthM QU of eq.[51 can be written as:

UTMQU = wxX1 + wy X2 + ;X3 (.10)
Moreover, sinc&)T6®' MU = (uT M(S(BU)T, it yields:

UT6®" MU = 6, X + 6, X + 66, X3 (11)

Note that the produ@®' Q is:

(w§ + w2 —wxwy —WxWy
Q'O = —wWxWy (wi + wg) —Wyw; (.12)
—WxWz —Wyw; (w2 + wi)

Thus, it can be written as:

Q0= (a))z, + wg)Sl + (a))z( + a)g)Sz + (wi + (,4))2,)83, + WxwySs + Wyw;Ss + WywW;Se (:13)
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443

444

445

446

447

448

449

450

451

452

453

1 0 O 0 0 O 0 0 O 0 -1 0
where:sl"éfooo},sg“éf{01o},sg“éf[ooo,&“éf{—l 0 0, %
0 0O 0O 0 O 0 0 1 0 0 O
0 0 -1 00 0 -
0 0 0|landS |0 0 -1|. Now, introducing the variablesy; = UTMS,U, Y, £
-1 0 O 0 -1 O

UTMSU, Y3 £ UTMSU, Y4 £ UTMSU, Y5 £ UTMSsU andYs & UT MU, one can write:
uTMQ' QU = (w)z, + wE)Yl + (w)z( + wE)Yg + (w)z( + w)zl)Yg + wxwy Y4+ Wxw; Y5 + wyw;Ye (.14)
Thanks to the introduction oA;, Az and Ag, the previous equation can be written as:

UT6® MAU = UT (56xA] +6dyA; +66:A5) M (axA1 + ayAz + azA)U  (.15)
and, after multiplications:

UT(S(BT MAU = Oy (a/lel +ayZip+ 0’1213)
+6¢by (aX221 +ayZoo + 0’1223) (.16)

+0¢2(axZa1 + ayZaz + @ Z33)

in which: o
Zia=UTA MAgU (17)
forr =1,2,3andd = 1, 2, 3. At the same time:
UT5(I_)T MQU = Oy (wan +wyZip + wzzl3)
+6¢y (wx221 +wyZoo + wZZZ3) (.18)

+0¢; (wX231 +wyZzp + w2233)
The term:
UTSUT6®" MQ' QU = UT (5¢x A + 60y A; +66,A5) M (19
((w§ + w§)§1 + (w2 + w§)§2 + (w2 + w)z,)gg + wxwy§4 + WxwSs + wywzgﬁ) U .

can be written as:
UT6d' MQ' QU=
Spx ((w)z, + w2)Wi1 + (w2 + w2)Wio + (w2 + w}z,)ng + wyxwyW1s4 + wxw, W15 + wywzwle)
+5¢y ((w)zl + w%)ng + (w)z( + w%)Wgz + (w)z( + w)zl)ng + wxwyWas + wxw,Was + wywzwze)

+6¢Z((w)2/ + w%)ng + (w)z( + wg)Wgz + (w)z( + w)zl)ng + wxwyW34 + wyxw,W3s + wwaW;;s)
(.20)
where: o
W, = UTA MSU (.21)

forr=1,23andt=1,23,4,5,6.
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APPENDIX D: Development of termsi

If the nodes do not have rotational DoFs, only gravity for(est torques) are applied to
them. In this case:

?:[100100100100]
,=[010010010010.][ (.22)
3=[00 100100100 1.]

It is worth to introduce the notation:

~ T

P=[r 1 10 (.23)
wherel are 3x 3 identity matrices. Conversely, if nodes have rotationa#gji; are defined as:

=[1 0000010000 0.][

|[01000001oooo] (.24)

is [001000001000 ]
and the matriX, is in this case:

= o1 0. o (.25)

wherel and0 are 3x 3 unit and zero matrices. Note that mattihas been defined for the

case where all the nodes have rotational DoFs or for the @epmsse, where none of them has
rotational DoFs. In case where nodes with rotational Dokesrantdes without are present in the
same link, the development of the definitionl a§ straightforward.
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