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Abstract

In this paper, a novel formulation for modeling the vibration of spatial flexible mechanism and
robots is introduced. The formulation is based on the concepts of Equivalent Rigid Link System
(ERLS) that allows to write the kinematic equations of motion of the Equivalent Rigid Link
System as decoupled from the compatibility equations of thedisplacement at the joint. With
respect to the available literature, in which the ERLS concept has been proposed together with a
FEM approach (ERLS-FEM), the formulation is here extended through a modal approach and,
in particular, a Component Mode Synthesis (CMS) technique,allowing to maintain a reduced-
order system of dynamic equations even when a fine discretization is needed. The model has been
validated numerically by comparison with the results obtained with the Adams-Flex™software,
that implements the well known Floating Frame of Reference (FFR) approach, for a benchmark
L-shaped mechanism, showing a good agreement between the two models.

Keywords: Equivalent Rigid Link System , Component mode Synthesis , Flexible-Link ,
Vibration , Deformation

1. Introduction1

In industrial robotics, the demand for high performances and high operating has highlighted2

the need to study and develop lightweight manipulators. On the other hand, due to the dynamic3

effects of structural flexibility that arise in lightweight systems, the design and control are more4

difficult and accurate dynamic models are crucial for reaching aneffective result.5

In the last twenty years, many researchers focused their works on this topic, developing6

and refining dynamic models and formulations of the equations of motion for multibody rigid-7

flexible-link systems. First of all, single flexible-link mechanisms, then planar and finally spatial8

flexible-mechanisms were addressed. This research area, especially the 3D systems and their9

control, is still an open field of investigation (Shabana 1997, Benosman et al. 2002, Wasfy and Noor10

2003, Dwivedy and Eberhard 2006, Tokhi and Azad 2008, Bauchau 2011, Garca-Vallejo et al.11

2008, Ouyang et al. 2013, Choi and Cheon 2004).12

In multibody dynamics, the classical approach is based on the rigid body dynamical model of13

the mechanism, then the elastic deformations are introduced to take the flexibility into account.14
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The elastic deformations of the bodies are influenced by the rigid gross motion and viceversa.15

The resultant complete dynamic formulation is a highly nonlinear and coupled set of partial16

differential equations.17

In order to obtain a set of ordinary differential equations from these partial differential equa-18

tions, thus a finite-dimensional problem, two methodologies have been adopted in the litera-19

ture, namely the “nodal” approach, i.e. the Finite Element Method (FEM), and the “modal” ap-20

proach, i.e. the Assumed Mode Method (AMM) (Dwivedy and Eberhard 2006, Dietz et al. 2003,21

Ge et al. 1997, Wang et al. 1996, Martins et al. 2003, Naganathan and Soni 1988, Nagarajan and Turcic22

1990, Theodore and Ghosal 1995, Kalra and Sharan 1991).23

Especially in case of large rotations and small vibration displacements, the most adopted and24

well-known formulation, that includes both the effect of the rigid body motion on the elastic25

deformation and the effect of the elasticity on the rigid body motion, is the so-called Floating26

Frame of Reference (FFR) formulation (Shabana 1997, 2005).In the FFR formulation, a system27

of coupled differential equations is obtained with no separation between the rigid body motion28

and the elastic deformation of the flexible body.29

By approaching the problem from a robotic point of view, the main drawback of the FFR30

is related to the constraint conditions since the connection through mechanical joints between31

different deformable bodies is expressed by coupled constraintequations that do not have an32

immediate formulation.33

In this work, a novel approach for dynamic modelling of spatial flexible mechanisms under34

the condition of large displacements and small deformations is presented.35

The method is based on an Equivalent Rigid Link System (ERLS), firstly introduced in36

(Turcic and Midha 1984b,a, Turcic et al. 1984, Chang and Hamilton 1991), that enables to de-37

couple the kinematic equations of the Equivalent Rigid LinkSystem from the compatibility38

equations of the displacements at the joints. Thanks to the ERLS, the standard concepts of 3-D39

kinematics can be adopted to formulate and solve the system kinematics. In previous works, the40

ERLS concept has been exploited together with a FEM approach(ERLS-FEM), to model firstly41

planar flexible-link mechanisms (Giovagnoni 1994, Gasparetto 2001, Gasparetto and Zanotto42

2006, Caracciolo et al. 2005) and then 3D systems (Vidoni et al. 2014, 2013, Gasparetto et al.43

2013). The approach has been also exploited and applied for control purposes (Trevisani 2003,44

Caracciolo et al. 2005, Boscariol and Zanotto 2012, Boschetti et al. 2012).45

One of the limitations of the ERLS-FEM model is that the number of Degrees of Freedom46

(DoFs) of the system, which is directly related to the mesh refinement, should be maintained low47

if a low computational time and a real-time model-based control is required.48

In this work, the ERLS approach, that can be applied to mechanisms with rotational DoFs49

or prismatic joints in which one of the links is the ground link, is extended through a modal50

approach, in order to obtain a more flexible solution based upon a reduced-order system of equa-51

tions. The compatibility with both rotational and prismatic joints is inherited by the use of52

Denavit-Hartemberg (Denavit and Hartenberg 1955) procedure for the definition and the solu-53

tion of the kinematics of the mechanism.54

To the best of our knowledge, this is the first work in which theERLS concept is applied55

in order to formulate the dynamics of spatial flexible mechanisms with a Component Mode56

Synthesis (CMS) technique.57

In this paper, after the description of the kinematics of theERLS and of the flexible-link58

mechanism (Section 2), the main differences between the ERLS and the FFR formulations are59

highlighted (Section 3). Section 4 deals with the derivation of the virtual work term contribu-60

tions while Section 5 collects the different terms into the equations of motion. The numerical61
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Figure 1: Model of the mechanism and kinematic definitions

implementation of the model and its validation is given in Section 6 through a comparison with62

the Adams-Flex™multibody dynamic software for a benchmark flexible mechanism.63

2. CMS and ERLS kinematics64

Let us consider Fig. 1, which shows the kinematic definitions: ui represents the nodal dis-65

placement vector of theith link, ei is the nodal position vector for theith element of the ERLS66

andpi is the absolute nodal position vector. The indexi spans from 1 tol, wherel is the number67

of links of the mechanism.68

Given the definition of the vectors above, the following holds:69

pi = ei + ui (1)

Let us express the nodal displacementsui of the i-th link as functions of a given number of70

eigenvectorsUi and modal coordinatesqi, namely71

ui = Uiqi (2)

Eigenvectors and eigenvalues can be calculated according to the chosen modal reduction72

approach, e.g. the Guyan reduction (Qu 2004). With respect to the previous ERLS-FEM for-73

mulations, that usually deal with flexible beam type links, the model extension through a modal74

approach will allow to work with whatsoever flexible- or rigid- link shape and finite elements.75

Assumption 1′. The CMS theory requires to choose the modal coordinates in such a way that76

they comprehend all the modal coordinates related to the rigid-motion of the link, plus at least77

one modal coordinate related to the main vibration mode of the link.78

If a link is assumed to be rigid, only eigenvectors related tothe rigid-motion are considered79

(6 eigenvectors for the 3D case, 3 eigenvectors for the 2D case).80

Let ûi = Siui be the displacements of the joint belonging to the linki andûi+1 = Si+1ui+1 the81

displacements of the joint belonging to the linki+1, where matricesSi andSi+1 are introduced82
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Table 1: Main Nomenclature
symbol explanation

ui nodal displacement vector of thei -th link
ei nodal position vector of thei -th link
pi absolute nodal position vector for thei -th link

Ui eigenvectors of thei -th link
qi modal coordinates of thei -th link
Si matrix for the selection of the joint displacements among the nodal displacements

Ti, j local-to-local transformation matrix between the local reference frames ofi -th andj-th link
θ vector of joint positions
C matrix of compatibility relationships
qr vector of rigid-motion modal coordinates
qd vector of elastic modal coordinates

Cr, Cr partitions ofC
D matrix of relationships between vibrational modal coordinates and rigid-body modal coordinates
E vector containing the partial derivatives matrices ofC with respect to the rigid DoFs as defined in eq. (13)

G
def
= −C+r (θ)E(θ, q)

R local-to-global rotation matrix for the whole mechanism
GX velocity of point X
aX acceleration of point X
B̂ matrix of relationships between the linear velocities of three non aligned nodes with respect to

the velocity of the first one (see appendix A)
Ur, Ud rigid-body and elastic mode eigenvectors, respectively
Ω matrix of angular speeds for the whole mechanism
φ vector of virtual rotational displacements

M mass matrix
Φ matrix of absolute rotational displacement
Ω skew symmetric matrix of absolute angular velocities
A skew symmetric matrix of absolute angular accelerations
δΦ skew symmetric matrix of virtual rotational displacementsrepresented in the local reference frame

H elastic energy of each link
K stiffness matrix of each link
Γ diagonal matrix of the squares of natural frequencies of each link
f g vector of gravity forces
gl vector of gravity acceleration components expressed in thelocal reference frame
Î matrix of îi components (see Appendix D)
f vector of generalized forces acting on each link
δW virtual work
Û f submatrix ofU

J(θ) Jacobian matrix of the ERLS
Vo

i block diagonal selection matrix used in eq. (69)
N matrix that relates the vector of the independent DoFs with the overall system DoFs the used in eq. (69)
Li selection matrix for the elements independent form virtualdisplacements and accelerations
l̃i submatrix ofl elements independent from accelerations
L selection matrix for the elements independent form virtualdisplacements and accelerations

for the whole mechanism
l̃ submatrix ofl elements independent from accelerations for the whole mechanism
ω absolute angular velocity
α absolute angular acceleration
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just to extract the proper joint displacements from all the nodal displacementsui, hence they are83

made of ”0” and ”1” only.84

In terms of modal coordinates, the joint displacements are given by: ûi = SiUiqi andûi+1 =85

Si+1Ui+1qi+186

The following equation accounts for the compatibility condition at thei-th joint:87

ûi+1 = Ti+1,iûi (3)

whereTi+1,i(θ) is local-to-local transformation matrix between the two reference frames of the88

ELRLs associated to the two consecutive linksi andi+1. Transformation matrices are function89

of the joint parameters vectorθ =
{

θ1 θ2 · · · θn
}T

.90

Eq. 3 can be rewritten as:91

Si+1Ui+1qi+1 = Ti+1,i(θ)SiUiqi (4)

or92

[

−Ti+1,i(θ)SiUi Si+1Ui+1

]

[

qi

qi+1

]

= 0 (5)

Since the equations in (4) (one for each joint) are linear with respect to the modal coordinates,93

the following comprehensive compatibility equation can beassembled:94

C(θ)q = 0 (6)

where:95

C(θ) =
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













(7)

and96

q =
[

q1
T q2

T · · · qn
T
]T

(8)

Note that the coefficient matrixC depends only on the joint parameters and thatq contains97

both the rigid-body and the elastic modal coordinates.98

As far as the ERLS mechanism is considered, the total number of DoFs of all the links99

without constraintsm is related to the total number of DoFs of the ERLS mechanismn through100

the relationship101

m − ν = n (9)

The numbers of rows ofC equals the number of constraintsν imposed by the joints. The number102

of columns equals the total number of modal coordinates and is given by the sum of the number103

of the rigid-body modal coordinatesm and the number of the elastic modal coordinatesd. For104

eq. 6, the dimensions ofC areν × (m + d) = (m − n) × (m + d). Therefore, the linear system (6)105

is underdetermined and the solution is of the form∞n+d.106

5



All the rigid-motion modal coordinates and the elastic modal coordinates can be gathered107

respectively into two separate vectorsqr and qd. Thus, the system (6) can be rearranged as108

follows:109

Cr qr + Cd qd = 0 (10)

wherein the submatrixCr has dimensionsv × m andCd has dimensionsv × d. Note that,110

because of eq. 9,ν < m, i.e. the number of unknowns is greater than the number of equations.111

By using the right pseudo-inverseC+r = CT
r (CrCT

r )−1 (Ben-Israel and Greville 2003), the112

system (10) can be solved with respect toqr, namelyqr = −C+r Cd qd. In this way, the minimum113

norm solution is chosen for the unknownqr vector. Eventually, introducing a new matrixD(θ)
def
=114

−C+r (θ)Cd(θ) it is possible to represent the vibration modal coordinates as functions of rigid-body115

modal coordinates and joint parameters (ERLS coordinates):116

qr = D(θ)qd (11)

It should be remarked that, according to (11), the rigid-body modal coordinates are function117

of θ andqd only. Note that, ifqd = 0 thenqr = 0. In other words, if all the links are assumed118

rigid, the remaining DoFs are the ones of the ERLS.119

According to the literature, the selection of the interior modes to be retained to keep model120

dimensions to a minimum while preserving system response accuracy is still an open field of121

investigation; indeed, the choice of the reduction strategy and dimension of the reduced-order122

model is generally left to the experience. Often, only the lower frequency modes are retained. In123

Koutsovasilis and Beitelschmidt 2008 and Besselink et al. 2013 a comparison of model reduction124

techniques have been made. Recently, a new approach based onan energy-based coefficient has125

been proposed for resonant systems by Palomba et al. 2014. Inthis work, in order to be able to126

compare the results with the FFR Adams™ implementation (see Section 6), a classical Craig-127

Bampton approach (Craig and Bampton 1968), where the lower frequency modes are retained,128

has been adopted.129

2.1. Derivative terms130

In order to implement the dynamic analysis of the complete mechanism, it is necessary to131

derive all the velocity and acceleration terms as functionsof θ, qd and their derivatives.132

By differentiating eq. 6 with respect to time, it yields:Ċq + Cq̇ = 0 which can be written as:133

∑

k

∂C
∂θk

qθ̇k + Cq̇ = 0 (12)

Let us define:134

E(θ, q)
def
= [
∂C
∂θ1

q...
∂C
∂θn

q] (13)

By replacing (13) into (12), one obtains:Eθ̇ + Cq̇ = 0 and, after splitting the coefficient135

matrix C according to (10), (12) becomesEθ̇ + Cd q̇d + Cr q̇r = 0.136

The previous equation can be solved with respect to the rigid-motion modal coordinate137

derivative terms by exploiting the pseudo-inverse, namely:138
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q̇r = −C+r Cd q̇d − C+r Eθ̇. The final equation is obtained by introducing the matrixG(θ, q)
def
=139

−C+r (θ)E(θ, q)140

q̇r = D(θ)q̇d + G(θ, q)θ̇ (14)

which expresses the relationship between the velocities ofthe rigid-body modal coordinates141

and the velocities of the independent variables. The equation can be represented in terms of142

virtual displacements:143

δqr = D(θ)δqd + G(θ, q)δθ (15)

2.2. Acceleration terms144

By differentiating twice eq. 6 with respect to time, one obtains:145

C̈q + 2Ċq̇ + Cq̈ = 0 (16)

The second derivative of the coefficient matrix is :146

C̈ =
d
dt

∑

k

∂C
∂θk
θ̇k =
∑

j

∑

k

∂2C
∂θ j∂θk

θ̇ jθ̇k +
∑

k

∂C
∂θk
θ̈k (17)

Let us introduce the notations:147

h(θ, θ̇, q)
def
=

















∑

j

∑

k

∂2C
∂θ j∂θk

θ̇ jθ̇k

















q (18)

and148

c(θ, θ̇, q̇)
def
= Ċq̇ =















∑

k

∂C
∂θk
θ̇k















q̇ (19)

Multiplying both sides of eq. 17 byq and using (13) and (18), it yields:149

C̈q = h(θ, θ̇, q) + E(θ, q)θ̈ (20)

Replacing eq.s 16 and 19 into 20, the second derivative of eq.6 can be written as:150

h(θ, θ̇, q) + E(θ, q)θ̈ + 2c(θ, θ̇, q̇) + C(θ)q̈ = 0 (21)

By splitting matrixC according to eq. 10 and solving the resulting system with respect toq̈r,151

the acceleration of rigid-body modal coordinates as functions of the independent coordinates is152

computed:153

q̈r = −C+r (θ)h(θ, θ̇, q) − C+r (θ)E(θ, q)θ̈ − 2C+r (θ)c(θ, θ̇, q̇) − C+r (θ)Cd(θ)q̈d (22)

By adopting the notation:154

n(θ, θ̇, q, q̇)
def
= −C+r (θ)h(θ, θ̇, q) − 2C+r (θ)c(θ, θ̇, q̇) (23)

eq. 22 can be rewritten as:155

q̈r = G(θ, q)θ̈ + D(θ)q̈d + n(θ, θ̇, q, q̇) (24)
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3. Differences between the ERLS and the FFR formulations156

It is now possible to enumerate the differences between the ERLS and FFR formulations.157

1. In the FFR approach theith deformed body does not present rigid displacements with158

respect to theith link, in the sense that there are not rigid motions of the deformed body159

with respect to the local reference frame. On the other hand,rigid displacements are160

required for the ERLS approach: they are defined by the valuesof the rigid-body modal161

coordinates.162

2. In the FFR case, joint parameters and deformation modal values are coupled in thekine-163

matic equations. Indeed, the constraint equations depend both on the elastic deformations164

and on the reference motion of the elastic bodies. In the Equivalent Rigid Link System ap-165

proach thekinematic equations contain just the joint parameters, since deformation modal166

values are present in the compatibility condition at the joints. This means that, as high-167

lighted in previous works e.g. Vidoni et al. 2013, thekinematic equations of the ERLS are168

decoupled from the compatibility equations of the displacement at the joints.169

3. As a consequence of 2, if a closed-form solution of thekinematic equations is available, it170

can be employed without resorting to iterative algorithm procedures.171

4. Moreover, thanks to 2, for the ERLS approach the choice of independent variables is not172

problematic as it is, on the other hand, for the FFR approach,as stated in (Shabana 2005).173

5. The ERLS approach allows to work directly with a classicalDenavit-Hartenberg (Denavit and Hartenberg174

1955) formulation as well as to cope with the flexible-link robot as if it were a rigid-link175

one.176

4. Virtual work contributions177

4.1. Virtual work of inertial forces for a single link178

Let us drop, for sake of clarity, thei subscript which indicates the link to which each vector179

refers to. Letp be the vector containing the global coordinates of all the nodes of the link,e the180

vector containing the global coordinates of all the nodes belonging to the ERLS andu the vector181

containing all the nodal displacements. These vectors satisfy the equation182

p = e + u (25)

according to notation of eq. 1. Note that all terms are represented with respect to the global183

reference frame.u can be expressed on terms of modal coordinates by the relationship184

u = R̄Uq (26)

where the matrix̄R contains on the main diagonal the blocks of the local-to-global rotational ma-185

tricesTi. Thus, the nodal virtual displacements and the second derivative of nodal displacements186

are187

δu = δR̄Uq + R̄Uδq (27)

188

ü = ¨̄RUq + 2 ˙̄RUq̇ + R̄Uq̈ (28)

In order to compute the virtual displacements and the acceleration related to the ERLS, it189

is necessary to introduce the general formulation of velocity and acceleration of a generic point190

associated to the rigid-body, i.e. to the link of the ERLS.191
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For a pointP, the velocity and the acceleration measured with respect toa pointO are:192

vp = vo − (P − O) ∧ ω (29)

ap = ao − (P − O) ∧ α + ω ∧ (vp − vo) (30)

Let us choose three different non-aligned nodes, identified by the subscripts 0, 1 and 2. The193

velocities of the last two nodes with respect to the first one are: v1 = v0 − (P1 − P0) ∧ ω and194

v2 = v0 − (P2 − P0) ∧ ω; using a matrix notation, the following holds:195





















v0

v1

v2





















= B̂
[

v0

ω

]

(31)

whereB̂ is a 9× 6 matrix defined in Appendix A.196

The matrixU can be split into two blocks: the columns of the first one are the rigid-body197

mode eigenvectors while the columns of the second one are thedeformation mode eigenvectors:198

U =
[

Ur | Ud

]

.199

Let us extract from the matrixUr the submatrixÛr whose rows contain just the components200

related to the nodes 0,1 and 2. SinceUr is made with rigid-body mode vectors, there exists an201

unknown vectorx which satisfies:202





















v0

v1

v2





















= Ûr x (32)

By equating eq.s 31 and 32, and using the left pseudo-inverseto obtain the solution that203

minimizes the norm of the error (Ben-Israel and Greville 2003), it yields:204

x = B̃
[

v0

ω

]

(33)

where:B̃ = (Û
T
r Ûr)−1Û

T
r B̂.205

By means of the matrixUr introduced in eq. 26, all the velocities of the nodes belonging to206

the ERLS (expressed with respect to the reference frame of the links) are obtained as a function207

of the velocity of node 0 and the angular velocity vector, in the form:208

ė = R̄Ur B̃
[

v0

ω

]

(34)

Note that the matrix̃B is defined by the link geometry and by the eigenvectors. Thus,it is209

constant and can be calculated once at the beginning of the simulation.210

Let us express the acceleration of nodes 0,1 and 2 as the sum ofthe two contributes:211

a0 = aI
0 + aII

0
a1 = aI

1 + aII
1

a2 = aI
2 + aII

2

(35)

The first term represents the contributions of the acceleration for null angular velocity; the second212

one represents the components due to the angular velocity only. Considering thataI
0 = a0,213
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aI
1 = a0 − (P1 − P0) ∧ α andaI

2 = a0 − (P2 − P0) ∧ α, the nodal accelerations for null angular214

velocity are215

ëI = R̄Ur B̃
[

a0

α

]

(36)

The contribution to the nodal accelerations due to the angular velocity is216

ëII = R̄Ω̄Ur B̃
[

0
ω

]

(37)

The matrixΩ̄ contains on its main diagonal the skew-symmetric matricesΩ given by the217

components of the angular velocity expressed with respect to the link reference frame. The218

centripetal contribution has been obtained by applying therelationshipω ∧ (vp − vo) = ω ∧219

[−(P − 0) ∧ ω] to all the nodes of the link.220

By adding all the contributions due to the nodal accelerations (eq.s 36 and 37), one obtains:221

ë = ëI + ëII = ë = R̄Ur B̃
[

a0

α

]

+ R̄Ω̄Ur B̃
[

0
ω

]

(38)

The last equation can be simplified by introducing the matrixB def
=

[

B̃
0

]

. The lower block of222

B is made of a number of null rows equal to the number of elastic modal coordinates of the link.223

Moreover it is explicitly assumed that the columns of the eigenvectors matrixU (from left to224

right) are increasing value of the corresponding eigenvalues.225

Note thatUr B̃ can be written asUB; thus, eq.s 34 and 38 can be rewritten as:226

ė = R̄UB
[

v0

ω

]

(39)

227

ë = R̄UB
[

a0

α

]

+ R̄Ω̄UB
[

0
ω

]

(40)

From eq. 39, the virtual displacements of the nodes of the ERLS are:228

δe = R̄UB
[

δP0

δφ

]

(41)

Eventually, sinceδp = δe + δu and p̈ = ë + ü, the virtual displacements and the absolute229

accelerations of the nodes are:230

δp = R̄UB
[

δP0

δφ

]

+ δR̄Uq + R̄Uδq (42)

231

p̈ = R̄UB
[

a0

α

]

+ R̄Ω̄UB
[

0
ω

]

+ ¨̄RUq + 2 ˙̄RUq̇ + R̄Uq̈ (43)

Let M be the mass matrix expressed with respect to the local reference frame. The virtual232

work done by the inertial forces is:233

δWinertia = −δpT R̄MR̄
T

p̈ (44)
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or, introducing eq.s 42 and 43:234

δWinertia = −(δqT UT + qT UTδR̄T R̄ +
[

δP0

δφ

]T

BT UT )M

(UB
[

a0

α

]

+ Ω̄UB
[

0
ω

]

+ R̄T ¨̄RUq + 2R̄T ˙̄RUq̇ + Uq̈)

(45)

The termsδR̄
T

R̄, R̄
T ˙̄R andR̄

T ¨̄R can be written as (see Appendix B):235

δR̄
T

R̄ = δΦ̄T R̄
T ˙̄R = Ω̄ andR̄

T ¨̄R = Ā − Ω̄T
Ω̄ (46)

where:236

Ω
def
=





















0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0





















, A def
=





















0 −αz αy

αz 0 −αx

−αy αx 0





















andδΦ
def
=





















0 −δφz δφy

δφz 0 −δφx

−δφy δφx 0





















(47)

δφx,δφyandδφz are the virtual rotational displacements of the link. Usingeq.s 46, the virtual237

work of inertial forces given by (45) can be simplified:238

δWinertia = −(δqT UT + qT UTδΦ̄
T
+

[

δP0

δφ

]T

BT UT )M

(UB
[

a0

α

]

+ Ω̄UB
[

0
ω

]

+ ( Ā − Ω̄
T
Ω̄)Uq + 2Ω̄Uq̇ + Uq̈)

(48)

By computing the products between the virtual displacements and the inertial forces, one obtains:239

−δWinertia = δqT UT MUB
[

a0

α

]

+ qT UTδΦ̄
T

MUB
[

a0

α

]

+

[

δP0

δφ

]T

BT UT MUB
[

a0

α

]

+δqT UT MΩ̄UB
[

0
ω

]

+ qT UTδΦ̄
T

MΩ̄UB
[

0
ω

]

+

[

δP0

δφ

]T

BT UT MΩ̄UB
[

0
ω

]

+δqT UT M(Ā − Ω̄
T
Ω̄)Uq + qT UTδΦ̄

T
M(Ā − Ω̄

T
Ω̄)Uq +

[

δP0

δφ

]T

BT UT M(Ā − Ω̄
T
Ω̄)Uq

+2δqT UT MΩ̄Uq̇ + 2qT UTδΦ̄
T

MΩ̄Uq̇ + 2

[

δP0

δφ

]T

BT UT MΩ̄Uq̇

+δqT UT MUq̈ + qT UTδΦ̄
T

MUq̈ +
[

δP0

δφ

]T

BT UT MUq̈

(49)

Now the virtual work can be split into two sectionsδWinertia = δW I
inertia + δW

II
inertia, the former240

containing all the terms related to the second derivative ofthe variables, the latter containing all241

the remaining terms.242

−δW I
inertia = δq

T UT MUB
[

a0

α

]

+ qT UTδΦ̄
T

MUB
[

a0

α

]

+

[

δP0

δφ

]T

BT UT MUB
[

a0

α

]

+δqT UT MĀUq + qT UTδΦ̄
T

MĀUq +
[

δP0

δφ

]T

BT UT M ĀUq

+δqT UT MUq̈ + qT UTδΦ̄
T

MUq̈ +
[

δP0

δφ

]T

BT UT MUq̈

(50)
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δWII
inertia = −δq

T UT MΩ̄UB
[

0
ω

]

− qT UTδΦ̄
T

MΩ̄UB
[

0
ω

]

−

[

δP0

δφ

]T

BT UT MΩ̄UB
[

0
ω

]

+δqT UT MΩ̄
T
Ω̄Uq + qT UTδΦ̄

T
MΩ̄

T
Ω̄Uq +

[

δP0

δφ

]T

BT UT MΩ̄
T
Ω̄Uq

−2δqT UT MΩ̄Uq̇ − 2qT UTδΦ̄
T

MΩ̄Uq̇ − 2

[

δP0

δφ

]T

BT UT MΩ̄Uq̇

(51)

The single terms of the last two eq.s are developed in Appendix C.243

4.2. Variation of elastic energy for a single link244

The elastic energy of a link is given byH = 1
2uT Ku. Therefore its variation is:245

δH = δuT Ku (52)

Sinceu = Uq, the variation of elastic energy becomes:246

δH = δqT UT KUq = δqT
Γq (53)

where the matrixΓis a diagonal matrix whose components are the squares of the natural frequen-247

cies. Considering just the submatrixΓd corresponding to the non null eigenvalues, it is possible248

to write:249

δH = δqT
dΓd qd (54)

4.3. Virtual work of gravity forces related to a single link250

The virtual work done by the gravity forces is:251

δWg = δpT f g (55)

where f g are the gravity forces. The virtual displacements can be written as:252

δp = R̄UB
[

δP0

δφ

]

+ δR̄Uq + R̄Uδq (56)

and the gravity forces as:253

f g = R̄Mĝl = R̄M(î1gx + î2gy + î3gz) = R̄MÎgl (57)

wheregl =
{

gx, gy, gz

}T
represents the gravity expressed with respect to the link’sframe. Vectors254

îi are defined depending on the nature of the nodes (See AppendixD).255

Replacing eq. 56 and 57 into 55, produces:256

δWg = (

[

δP0

δφ

]T

BT UT R̄T
+ qT UTδR̄T

+ δqT UT R̄T
)R̄MÎgl (58)

or:257

δWg =

[

δP0

δφ

]T

BT UT MÎgl + qT UTδΦ̄
T MÎgl + δq

T UT MÎgl (59)
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The first term of eq. 59 can be written as:258

[

δP0

δφ

]T

BT UT MÎgl =

[

δP0

δφ

]T

BT Q4gl (60)

where:259

Q4 = UT MÎ (61)

Part of the second term can be written as:260

UTδΦ̄
T

MÎ = UT
(

δφx Ā
T
1 + δφy Ā

T
2 + δφz Ā

T
3

)

MÎ

= δφ1Q1 + δφ2Q2 + δφ3Q3

(62)

where:Q1
def
= UT ĀT

1 MÎ, Q2
def
= UT ĀT

2 MÎ andQ3
def
= UT ĀT

3 MÎ.261

The third term can be written as:262

δqT UT MÎgl = δq
T Q4gl (63)

4.4. Virtual work of the resultant generalized forces (forces or torques) acting on the link263

The virtual work done by a generalized forcef is:264

δW f = δpT f (64)

where the virtual displacement is:265

δp = TÛ f B
[

δP0

δφ

]

+ δTÛ f q + TÛ f δq (65)

In this caseÛ f is a submatrix ofU. Its rows are the rows ofU related to the DoFs the266

generalized force is applied to.267

Let us define the generalized force vector whose components are referred to the local link’s268

reference asf l. The relationship:f = T f l holds true. Therefore the virtual work done by a269

generalized force can be written as:270

δW f = (

[

δP0

δφ

]T

BT Û
T
f RT + qT Û

T
f δR

T + δqT Û
T
f RT )T f l (66)

or271

δW f =

[

δP0

δφ

]T

BT Û
T
f f l + qT Û

T
f δΦ

T f l + δq
T Û

T
f f l (67)

According to (47), the second term of (67) has the following form:272

qT Û
T
f δΦ

T f l =

δφ1qT Û
T
f





















0 0 0
0 0 1
0 −1 0





















f l + δφ2qT Û
T
f





















0 0 −1
0 0 0
1 0 0





















f l + δφ3qT Û
T
f





















0 1 0
−1 0 0
0 0 0





















f l

(68)
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5. Equations of motion273

When dealing with a multi-body system, the obtained formulation should be managed to274

obtain compact motion equations expressed in terms of the accelerations of the DoFs of the275

system.276

Thus, by exploiting eq.s 11, 15 and 24, the virtual terms of the generici − th link can be277

rewritten as:278





















δP0i

δφi

δq





















=

[

Vθi 0
0 Vqi

]





















J(θ) 0
G(θ, q) D(θ)

0 I





















[

δθ

δqd

]

= Vo
i N
[

δθ

δqd

]

(69)

whereJ(θ) represents the Jacobian matrix of the ERLS, and theVo
i a selection matrix for279

the proper elements of thei − th link. The Vo
i matrix is block diagonal and allows to select the280

correct terms related both to the rigid DoFs and to the independent vibration modal coordinates.281

Also the acceleration terms can be rewritten as function of the independent variables:282





















a0i

αi

q̈





















= Vo
i N
[

θ̈

q̈d

]

+ Vo
i





















J̇(θ, θ̇)θ̇
n(θ, θ̇, q, q̇)

0





















(70)

whereJ̇(θ, θ̇) represents the first time derivative of the Jacobian matrixof the ERLS; the sec-283

ond term of the equation depends only on the position and velocity of the independent variables284

and is thus known.285

In such a way, all the terms of thei − th link are expressed as functions of the independent286

variables and can be easily added and computed.287

The virtual work done by the inertial forcesδW I
inertia,i andδW II

inertia,i of each link, and the288

virtual works done by the gravitationalδWg and generalizedδW f forces, can be reformulated in289

a more compact form. Namely, by gathering in theL i matrix all the terms not depending on the290

virtual displacements and accelerations, the contribution given byδW I
inertia,i becomes:291

−δW I
inertia,i =

[

δPT
0i δφ

T
i δqT

]

Li





















a0i

αi

q̈





















(71)

Now, by substituting eq. 69 and eq. 70, it holds:292

−δW I
inertia,i =

[

δθT δqT
d

]

NT VoT
i Li(Vo

i N
[

θ̈

q̈d

]

+ Vo
i





















J̇(θ, θ̇)θ̇
n(θ, θ̇, q, q̇)

0





















) (72)

TheδW II
inertia,i term can be expressed by gathering in theli matrix all the terms not depending293

on the virtual displacements:294

δW II
inertia,i =

[

δPT
0i δφ

T
i δqT

]

li =
[

δθT δqT
d

]

NT VoT
i li (73)

Now, since the second term in eq. 72 does not eventually depend on the virtual displacements,295

it can be included in theli matrix.296

All the other terms, i.e. the variation of the elastic energyδH (eq.54), of the gravity forces297

δWg (eq. 60, 62 and 63), and of the resultant generalized forcesδW f (eq.67) do not depend on298
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Figure 2: L-shaped mechanism: reference frame and node discretization

accelerations and can be gathered into the right hand term ofthe dynamic system equation; for299

sake of clarity, the matrixl which now includes all these contributes will be namedl̃i. By naming300

δWi the term which includes all the contributions not dependingon accelerations, we obtain:301

δWi =
[

δPT
0i δφ

T
i δqT

]

l̃i =
[

δθT δqT
d

]

NT VoT
i l̃i (74)

By adding up all the links contributions, the following equation is obtained:302

−δW I
inertia =

N
∑

i=1

[

δθT δqT
d

]

NT VoT
i Li(Vo

i N
[

θ̈

q̈d

]

+ Vo
i





















J̇(θ, θ̇)θ̇
n(θ, θ̇, q, q̇)

0





















) =

= δW =
N
∑

i=1

[

δθT δqT
d

]

NT VoT
i l̃i

Finally, by lettingL def
=
∑N

i=1 VoT
i LiVo

i and l̃ def
=
∑N

i=1 VoT
i l̃i, and discarding the virtual displace-303

ments, the final model representation is obtained:304

NT LN
[

θ̈

q̈d

]

= NT





















−L





















J̇(θ, θ̇)θ
n(θ, θ̇, q, q̇)

0





















+ l̃





















(75)

6. Numerical implementation and model validation305

A MatLab™ software simulator has been implemented in order to test andto validate the306

dynamic model presented in the previous Sections. A L-shaped benchmark mechanism has been307

chosen (Gasparetto et al. 2013), as in Fig. 2. The particularshape of the system has been chosen308

to allow a 3D motion of the mechanism, i.e. to induce motion and vibrations in different direc-309

tions, and not only on a plane as often made in literature, see(Dwivedy and Eberhard 2006).310
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Table 2: Geometrical and mechanical parameters of the L-shaped mechanism

Elem. Material Length Depth Width Densityρ Poisson’s Young’s m.
[m] [m] [m] [kg/m3] ratio [N/m2]

1st Steel 0.5 0.03 0.01 7800 0.33 2e11

2nd Steel 0.5 0.03 0.01 7800 0.33 2e11

The results have been compared with those provided by Adams™ for the same mechanism.311

It is well known that the Adams™ software uses a Floating Frame of Reference approach and a312

Component Mode Synthesis technique based on the Craig-Bampton method where the DoFs of313

the system are partitioned into boundary and interior DoFs and the formers are exactly preserved314

when higher order modes are truncated and the system dimension reduced (Craig and Bampton315

1968).316

In Adams™, the link flexibility is imported and loaded through a special file, i.e. the modal317

neutral file. Thus, firstly the links have to be modeled and meshed in a computer-aided engineer-318

ing simulation software such as Ansys™ and then the proper file generated. For this purpose a319

special toolbox is available in Ansys™ (ANSYS 2011).320

In the ERLS-CMS model under consideration, a similar approach can be used. Indeed, to set321

up the significant terms of each link such as, for instance, eigenvectors and eigenvalues, the same322

files based on the Craig-Bampton reduction that Adams™ uses to import the link flexibility can323

be exploited for the formulation under evaluation. Thus, the comparison can be made being sure324

that the two approaches work with the same kind of modal reduction.325

The L-shaped mechanism chosen for the tests is made of two flexible rods and can be con-326

sidered as the 3D version of the classic single-link planar mechanism adopted as benchmark in327

other approaches limited to a 2D motion.328

6.1. Test 1: convergence of the solution329

In the first numerical test the convergence of the solution ofthe ERLS-CMS model imple-330

mented in Matlab™ has been evaluated; the main geometrical and mechanical parameters of the331

tested mechanism are reported in Table 2.332

Since the L-shaped system can rotate only around its y-axis,i.e. it has one rigid DoF, due333

to the chosen mechanical and geometrical parameters, smalldeformations but large rotations are334

taken into account. In Ansys™ the link has been modeled with four Euler-Bernoulli beams: each335

beam has two nodes and six degrees of freedom, thus the whole mechanism link has five nodes336

and thirty eigenvalues. The modal neutral file has been builtby choosing as interface nodes the337

first and last node of the L-shaped mechanism and exporting 18modes over the 30 available.338

The motion is simulated under gravity (g = 9.81 m/s2), without friction and damping, by339

releasing the mechanism from the horizontal (θ = 0 deg) position. The chosen solver was a340

modified Runge–Kutta algorithm. Figures 3(a) and 3(b) show the Z motion of the elbow and341

of the last node of the L-shaped mechanism with respect to thenumber of considered modes,342

respectively. In Table 3, theθ and the 3rd and 5th node coordinates at a specific time, i.e. 0.5 s,343

are reported. As can be seen from the results, the comparisons show the converge of the solution344

and the system behavior by changing the number of consideredmodes.345

With a number of 6 modes only the rigid behavior is simulated;by considering more modes,346

the elastic behaviour is taken into account. By increasing the number of modes, the convergence347

to the solution obtained through the FFR model can be achieved, as highlighted by the results348
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Figure 3: L-shape mechanism: Z-coordinate of the mechanismelbow (a) and of the mechanism tip (d) with respect to
the number of selected modes.

Table 3: Comparison ofΘ and the 3rd and 5th node coordinates at t=0.5 [s]

mode Θ 3rd 3rd 3rd 5th 5th 5th

N X-coord Y-coord Z-coord X-coord Y-coord Z-coord
deg [m] [m] [m] [m] [m] [m]

6 125.90 -0.2931 0 -0.4050 -0.2931 0 -0.4050
8 115.30 -0.2139 -0.0357 -0.4520 -0.2607 0.4643 -0.5509
10 114.30 -0.2061 -0.0491 -0.4555 -0.2596 0.4509 -0.5735
12 114.25 -0.2044 -0.0500 -0.4563 -0.2615 0.4500 -0.5741
14 114.20 -0.2027 -0.0509 -0.4571 -0.2635 0.4491 -0.5766
16 113.50 -0.1970 -0.0637 -0.4596 -0.2626 0.4491 -0.5955
18 113.50 -0.1970 -0.0637 -0.4596 -0.2626 0.4362 -0.5955
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presented in the next section. Anyway, a general rule for thechoice of a suitable number of nodes349

can be made according to the bandwidth of the actuator, by considering that the dynamic model350

of the flexible system should reproduce with sufficient accuracy all the modes that lie within this351

limit. This rule, which is commonly applied, is based upon the fact that a mode cannot be excited352

if it lies beyond the bandwidth of the actuator.353

6.2. Test 2: comparison of the ERLS and FFR approaches with respect to the number of consid-354

ered modes355

In order to show the behavior of the ERLS-CMS formulation fora spatial mechanism with356

respect to the FFR-CMS, a first comparison between the MatLab™ simulator and the Adams™357

software has been performed. The simulation lasts 2 secondsand the L-shaped mechanism358

has been evaluated under gravity, in absence of frictional forces and damping, starting from359

a 0 degree condition. The chosen solver was a modified Runge–Kutta algorithm and in a first360

simulation a modal neutral file with 18 modes has been considered while, in a second simulation,361

a modal neutral file with all the 30 modes has been used. Adams™ results are presented taking362

into account all the modes present in the modal neutral file. It should be highlighted that high363

order modes are included just to show the agreement between the novel dynamical model and364

the FFR formulation. It is known that analytical models are often incapable of describing with365

accuracy the behavior of a flexible system at high frequencies.366

Figure 4(a) show the Y- coordinate of the last node of the L-shaped mechanism with respect367

to the number of considered modes, up to 30. In Figure 4(b), a magnification of Figure 4(a)368

around 1.2 s is shown. It can be seen that the results providedby the ERLS-CMS approach are369

in good agreement with those given by Adams™ and how the signals overlap almost perfectly.370

Regarding the computing time needed to solve the dynamic system, since the two approaches371

are implemented in different software, i.e. Matlab™ and Adams™ , at the actual stage it is not372

possible to make a proper comparison between the two. Indeed, as a general consideration, it can373

be said that, since the ERLS approach is implemented in a non-optimized code, the simulations374

take comparable computing time in case of a low number of modes while, by adding modes with375

relative high frequencies, the Adams™ simulation time becomes lower.376

By looking at the previous ERLS implementation, since the new formulation allows reducing377

the number of DoFs of the considered system with respect to the ERLS-FEM approach, the378

computational time required decreases. Indeed, it is highly dependent on the number of DoFs,379

now the number of kept modes and their frequency; the choice of the selected modes could380

be made in different manners and if only the lower frequency modes are maintained, a faster381

integration time is required for finding the solution of the dynamic system.382

6.3. Test 3: comparison of the ERLS and FFR approaches under a torque input command383

In order highlight the vibrational behavior of the L-shapedlink in terms of frequency and384

shape of deformation, the mechanism response to a torque input has been simulated and the385

results compared with Adams™Ṫhe geometrical and mechanical parameters of the mechanism386

and the input torque signal have been chosen as in Table 4 and Figure 5 Gasparetto et al. 2013,387

and the simulation has been performed without any friction ord damping. Extra inertias and388

a concentrated mass have been introduced in order to take into account the motor, i.e.Im =389

0.0043kgm2 and shrink disc, i.e.Ic = 0.001269kgm2, inertias and the elbow articulation mass,390

i.e. 0.017 kg. The input signal allows, from a statically balanced configuration at 135o, to fast391

accelerate and decelerate the L-beam, according to the torque profile reported in figure 5.392
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Figure 4: L-shape mechanism comparison: Y-coordinate of the mechanism tip (a) and its magnification at about t= 1.2 s
(b).

Table 4: Geometrical and mechanical parameters of the L-shaped mechanism under an input torque signal

Elem. Material Length Depth Width Densityρ Poisson’s Young’s m.
[m] [m] [m] [kg/m3] ratio [N/m2]

1st Aluminium 0.5 0.008 0.008 2700 0.33 7e10

2nd Aluminium 0.5 0.008 0.008 2700 0.33 7e10
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Figure 5: Input torque signal.

As for the previous results, the link has been modeled in Ansys™ with four Euler-Bernoulli393

beams, the modal neutral file has been built by choosing as interface nodes the first and last node394

of the L-shaped mechanism and by exporting 18 modes over the 30 available.395

Figure 6 shows the elbow Z-coordinate position comparison of the last node of the first part of396

the L-shape mechanism, i.e. the elbow, between the simulated ERLS-CMS and Adams™ while397

Figures 7 and 8 show the elbow Z-coordinate acceleration in the time and frequency domain,398

respectively.399

As can be seen in Figure 8, the ERLS-CMS and Adams™ signals match very well each other400

and the main frequencies of the mechanism under test, i.e. 11, 31, 113, 171 Hz, are captured and401

properly simulated.402

Conclusions and future work403

In this paper an Equivalent Rigid Link System (ERLS) formulation is extended with Compo-404

nent Mode Synthesis (CMS) to develop a novel dynamic model ofspatial flexible mechanisms.405

After the definition of the model kinematics, the dynamic equations coupling rigid body and406

flexible body motion are obtained and discussed.407

The model has been implemented and numerically validated bycomparing its response with408

a commercial simulator based on the FFR formulation. The tests, performed both under gravity409

and under a forced torque input, show a good agreement between the results, thus proving the410

effectiveness of the proposed dynamic model.411

Future work will be devoted to further validate the model through experimental tests both on412

a L-shape and on another benchmark mechanism with at least two rigid DoFs.413
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APPENDIX A: B̂ matrix.418

Using the skew-symmetric matrix definition
[

{

a b c
}T
]

X

def
=





















0 −c b
c 0 −a
−b a 0





















employed for419

cross product operation,420

B̂ def
=

























I 0
I
[

−(P1 − P0)
]

X

I
[

−(P2 − P0)
]

X

























(.1)

APPENDIX B: Development of the terms involving rotational matrices.421

Let us find a new formulation for the terms containing the rotational matrix, namely:δR̄T R̄,422

R̄
T ˙̄R andR̄

T ¨̄R. The following eq.s hold true:423

RT T = I, RT Ṙ = Ω andRT R̈ + Ṙ
T

Ṙ = A (.2)

where:424

Ω
def
=





















0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0





















(.3)

and:425

A
def
=





















0 −αz αy

αz 0 −αx

−αy αx 0





















(.4)

22



are skew-symmetric matrices referring respectively to theabsolute angular velocity and absolute426

angular acceleration of the link.427

SinceṘ
T

Ṙ = ΩT TT TΩ = ΩT
Ω, it yields RT R̈ = A −ΩT

Ω . MoreoverṘ = TΩ , and thus,428

δT = TδΦ, where:429

δΦ
def
=





















0 −δφz δφy

δφz 0 −δφx

−δφy δφx 0





















(.5)

is a skew-symmetric matrix; its components are the virtual rotational displacements ex-430

pressed with respect to the local frame of the link. By pre-multiplying the previous eq. by431

δTT , one gets:432

δTT T = δΦT TT T = δΦT (.6)

In conclusion, extending the results to the matrixR̄, which contains on its main diagonal the433

single rotational matrices referred to each link, one gets:434

δR̄
T

R̄ = δΦ̄
T
, R̄

T ˙̄R = Ω̄ andR̄
T ¨̄R = Ā − Ω̄

T
Ω̄ (.7)

APPENDIX C: Development of the constant inertial matrices related to a single link435

The terms related to the inertial matrix of eq. 50 and 51 can bewritten as:436

UT MĀU = UT M
(

αx Ā1 + αy Ā2 + αz Ā3

)

U (.8)

where: A1
def
=





















0 0 0
0 0 −1
0 1 0





















, A2
def
=
















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0 0 0
−1 0 0





















and A3
def
=
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


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0 −1 0
1 0 0
0 0 0





















. By introducing the437

notations:X1 = UT MĀ1U, X2 = UT MĀ2U, and:X3 = UT MĀ3U eq. .8 becomes:438

UT MĀU = αxX1 + αy X2 + αzX3 (.9)

Following the same reasoning, the termUT MΩ̄U of eq. 51 can be written as:439

UT MΩ̄U = ωxX1 + ωyX2 + ωzX3 (.10)

Moreover, sinceUT δΦ̄
T MU =

(

UT MδΦ̄U
)T

, it yields:440

UTδΦ̄
T MU = δφxXT

1 + δφyXT
2 + δφzXT

3 (.11)

Note that the productΩT
Ω is:441

Ω
T
Ω =





















(ω2
y + ω

2
z ) −ωxωy −ωxωz

−ωxωy (ω2
x + ω

2
z ) −ωyωz

−ωxωz −ωyωz (ω2
x + ω

2
y)





















(.12)

Thus, it can be written as:442

Ω
T
Ω = (ω2

y + ω
2
z )S1 + (ω2

x + ω
2
z )S2 + (ω2

x + ω
2
y)S3 + ωxωyS4 + ωxωzS5 + ωyωzS6 (.13)
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where: S1
def
=


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, S5
def
=443
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andS6
def
=
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
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
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. Now, introducing the variables:Y1
def
= UT MS̄1U, Y2

def
=444

UT MS̄2U, Y3
def
= UT MS̄3U, Y4

def
= UT MS̄4U, Y5

def
= UT MS̄5U andY6

def
= UT MS̄6U, one can write:445

UT MΩ̄T
Ω̄U = (ω2

y +ω
2
z )Y1+ (ω2

x +ω
2
z )Y2+ (ω2

x +ω
2
y)Y3+ωxωyY4+ωxωzY5+ωyωzY6 (.14)

Thanks to the introduction of̄A1, Ā3 and Ā3, the previous equation can be written as:446

UTδΦ̄
T

MĀU = UT
(

δφx Ā
T
1 + δφy Ā

T
2 + δφz Ā

T
3

)

M
(

αx Ā1 + αy Ā2 + αz Ā3

)

U (.15)

and, after multiplications:447

UTδΦ̄
T MĀU = δφx

(

αxZ11 + αyZ12 + αzZ13

)

+δφy

(

αxZ21 + αyZ22 + αzZ23

)

+δφz

(

αxZ31 + αyZ32 + αzZ33

)

(.16)

in which:448

Zr,d = UT Ā
T
r MĀdU (.17)

for r = 1, 2, 3 andd = 1, 2, 3. At the same time:449

UT δΦ̄
T MΩ̄U = δφx

(

ωx Z11+ ωy Z12 + ωzZ13

)

+δφy

(

ωx Z21+ ωy Z22 + ωzZ23

)

+δφz

(

ωx Z31+ ωy Z32 + ωzZ33

)

(.18)

The term:450

UTδUTδΦ̄
T

MΩ̄
T
Ω̄U = UT

(

δφx Ā
T
1 + δφy Ā

T
2 + δφz Ā

T
3

)

M
(

(ω2
y + ω

2
z )S̄1 + (ω2

x + ω
2
z )S̄2 + (ω2

x + ω
2
y)S̄3 + ωxωyS̄4 + ωxωzS̄5 + ωyωzS̄6

)

U
(.19)

can be written as:451

UT δΦ̄
T

MΩ̄
T
Ω̄U=

δφx

(

(ω2
y + ω

2
z )W11 + (ω2

x + ω
2
z )W12 + (ω2

x + ω
2
y)W13 + ωxωyW14+ ωxωzW15 + ωyωzW16

)

+δφy

(

(ω2
y + ω

2
z )W21+ (ω2

x + ω
2
z )W22 + (ω2

x + ω
2
y)W23 + ωxωyW24+ ωxωzW25 + ωyωzW26

)

+δφz

(

(ω2
y + ω

2
z )W31 + (ω2

x + ω
2
z )W32 + (ω2

x + ω
2
y)W33 + ωxωyW34 + ωxωzW35 + ωyωzW36

)

(.20)
where:452

Wr,t = UT ĀT
r MS̄tU (.21)

for r = 1, 2, 3 andt = 1, 2, 3, 4, 5, 6.453
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APPENDIX D: Development of terms î454

If the nodes do not have rotational DoFs, only gravity forces(not torques) are applied to455

them. In this case:456

î1 =
[

1 0 0 1 0 0 1 0 0 1 0 0 ...
]T

î2 =
[

0 1 0 0 1 0 0 1 0 0 1 0 ...
]T

î3 =
[

0 0 1 0 0 1 0 0 1 0 0 1 ...
]T

(.22)

It is worth to introduce the notation:457

Î =
[

I I I I ... I
]T

(.23)

whereI are 3× 3 identity matrices. Conversely, if nodes have rotational DoFs,îi are defined as:458

î1 =
[

1 0 0 0 0 0 1 0 0 0 0 0 ...
]T

î2 =
[

0 1 0 0 0 0 0 1 0 0 0 0 ...
]T

î3 =
[

0 0 1 0 0 0 0 0 1 0 0 0 ...
]T

(.24)

and the matrix̂I, is in this case:459

Î =
[

I 0 I 0 ... 0
]T

(.25)

whereI and0 are 3× 3 unit and zero matrices. Note that matrixI has been defined for the460

case where all the nodes have rotational DoFs or for the opposite case, where none of them has461

rotational DoFs. In case where nodes with rotational DoFs and nodes without are present in the462

same link, the development of the definition ofI is straightforward.463
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