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Abstract—In this paper the topic of robust model based
trajectory planning for mechatronic systems is dealt with.
The aim is to improve, using sensitivity techniques, the ro-
bustness to parametric mismatches of commonly used in-
direct variational methods. The necessary optimality con-
ditions are derived using Pontryagin’s minimum princi-
ple, and the robustness condition are obtained by imposing
boundary constraints on sensitivity functions. Unlike other
methods available in literature, the proposed method can be
applied to nonlinear models. Several test cases are reported
to show the unconstrained and the constrained solution for
nonlinear mechatronic systems.
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I. Introduction

High speed and high efficiency robotics cannot be
achieved without the use of clever closed-loop control sys-
tem and smooth trajectory planning. This factors are even
more important if the robot presents some sort of structural
flexibility, since the presence of oscillations even after the
completion of the task can severely reduce the operative-
ness of the robot [1], [2], [3]. This flexibility, which might
be due to the joint [4] or link [5], [6] mechanical struc-
ture, is the source of several challenging problems. Exten-
sive research have been developed to find a solution to the
problem of vibration phenomena through the generation of
suitable trajectories, as reported in the review papers [7],
[8]. In this sense, a main distinction can be made among
model-based and model-free approaches. The advantage
of the first method is that the results can be easily adapted
to several robots, and that the results are independent from
the knowledge of the accurate dynamics of the robot. On
the other hand, this kind of approach can potentially lead to
high level of performance, even for high complexity models
[9], [10]. The majority of this works are based on optimal
control theory, and therefore they often limited in their ro-
bustness properties, as highlighted in [11]. In this means
that a trajectory that is optimal in the nominal case, can be
disadvantageous in if applied to a perturbed plant.

Most model-free approaches are based on geometrical
approaches, i.e. the trajectory is based on the composition
of polynomial functions [12], [13], splines [8] or nurbs [14].
Generally this approaches are targeted at maximizing the
smoothness of the trajectory by obtaining continuous and
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low peak values of jerk [15].
Model-based approach have been studied in a large num-

ber of works, with applications to basically every kind of
robot. The solution of the planning problem has been in-
vestigated for mobile robots in papers such as [16]. Flexible
joint robot have been considered in [17], [18]. Also the de-
sign of trajectories for Flexible-Link Manipulators (FLM)
have been studied quite extensively [19]. Approaches based
on the definition and the solution of Two-Point Boundary
Value Problems (TPBVP) have been developed, among oth-
ers, in [20], [9]. In these works a point-to-point trajectory
is computed by solving a constrained optimization prob-
lem, by imposing that the trajectory must connect the two
boundary points while respecting the robot dynamics.

In this work a solution to the problem of computation
of constrained point-to-point trajectories is analyzed using
TPBVP techniques, but with a particular focus on the ro-
bustness of the solution to parametric uncertainties. The
topic of robustness have been extensively studied in the area
of closed-loop control. The literature on the topic is very
extensive, but to the best of authors’ knowledge, there are
very few works that specifically focus on robust trajectory
planning algorithms.

One example is [21], in which robustness is achieved by
introducing in the fitness function a term of Gaussian cumu-
lative noise. The work by Shin [22] focuses on the defini-
tion of robot trajectories by taking into account the uncer-
tainties brought by payload variations through the change
of bounds on joint torques. Other interesting approaches
to robust trajectory planning are currently available as so-
lutions to the problem of robust optimization for dynamic
systems: an extensive overview of this problem is available
in [23].

The aim of this paper is to propose a method for planning
a trajectory which is based on two-point boundary value
problems and on the concept of desensitization. Sensitiv-
ity function have been used in [24], [25], [26] to improve
the robustness of closed-loop optimal controllers. The de-
sign of such controllers is done analytically, since a solution
of this kind can be found is the plant taken into considera-
tion is linear. It must be highlighted that the method pro-
posed here applies to nonlinear plants, therefore it greatly
enhances the field of application of the method presented in
[24], [25], [26].

The inclusion of constraints on actuator action also plays
an important role in most real-world applications, in which



the actuator’s capabilities must be exploited up to their full
potential and without violating the actuator’s safe operating
area. Among the techniques presented in the papers [24],
[25], [26],the only one that allows to include constraints is
[26], but the method used to limit the control action in that
paper cannot be directly applied to the class of problems
considered in this work.

The outcome of the approach presented in this paper is
a position profile for the system to be operated that can be
used by most industrial PLC-based controller.

II. Variational solution of the trajectory planning prob-
lem

The target here is to develop an optimal trajectory for a
mechatronic system. We consider here point-to-point tra-
jectory optimization problems, in which only the initial and
final end-effector positions are given, and the manipulator
is free to move between them. Therefore both the path and
the trajectory are subject to optimization, and they are se-
lected with the aim of minimizing a cost functional. Such
cost may depend on execution time, actuator effort, jerks
(or torque rates), or a combination of these variables. First
of all, let us define the optimization problem that we want
to solve. Given a dynamic system, that might be linear or
nonlinear, described by a set of differential equation in the
form:

ẋ = Ω(x, t, u) (1)

in which x is the vector of state variables of the system,
andu is the control vector. If we choose a cost function:

J = f(x, t, u) (2)

the following optimization problem can be stated:































min J(x(t), t, u) = min
tf
∫

t0

f(x, t, u)dt

s.to.
x(t0) = α
x(tf ) = β
ẋ(t) = Ω(x(t), t, u)

(3)

in which α andβ are some constant vector of the same
size ofx used to define the initial and final conditions for
the dynamic system. The solution of this optimization prob-
lems allows to find the trajectory for the state vectorx that
minimizes the cost functionJ . The trajectory is constrained
to respect the dynamics of the systemΩ(x, t, u) and the
value ofx at the initial (t = t0) and final (t= tf ) time.
A solution of the optimization problem in equation (3) can
be found using the calculus of variations and Pontryagin’s
Minimum Principle (PMP) [27].

First of all, the Hamiltonian of the system must be de-
fined as:

H = f(x, t, u) + λ(t)TΩ(x(t), t, u) (4)

in whichλ(t) = [λ1(t), . . . , λN (t)]T is the vector of La-
grangian multipliers, called also costate vector, which has
the same size of the state vectorx. The necessary condi-
tions for finding a minimum of the problem in Eq. (3) are,
according to the PMP:

∂H

∂u
= 0 (5)

ẋ =
∂H

∂λ
(6)

λ̇ = −
∂H

∂x
(7)

The above conditions can be put in a single system that
makes the computation straightforward. By definingu∗ the
solution of equation (5),H∗(x, t,λ) is the Hamiltonian in
whichu has been substituted withu∗. H∗ is called the min-
imizing Hamiltonian. A new system of ordinary differential
equation can be defined as:

ẏ =











∂H∗

∂λ

−
∂H∗

∂x











(8)

The new state vectory is obtained by augmenting the
original state vectorx with the vector of Lagrangian multi-
pliers:

y =

[

x
λ

]

(9)

Among the infinite possible trajectories of the dynamic
system in equation (1), we are interested in finding the
one that obeys to the boundary conditionsx(t0) = α and
x(tf ) = β.

A solution to this problem, that is basically a TPBVP
(Two-Point Boundary Value Problem), could theoretically
be found in closed form. In many cases, however, it is
solved numerically, given the difficulty of finding an ana-
lytic solution. Collocation method [9], [28] and shooting
method [29] are often used for this task.

A. Robustness improvements with sensitivity functions
The problem presented and solved in the previous section

works very well when the dynamic model used for planning
the trajectory can reproduce faithfully the actual dynamics
of the real system. This does not happen in all situations,
given the difficulty of describing a complex plant with a rea-
sonably simple model. Moreover, sometimes it is not even
possible to describe the dynamics of the plant with just a
single model. A common situation is when a robot is driv-
ing a payload that changes, as in a pick & place operation.
As the mass carried by the robotic manipulator changes,
also its dynamic model is altered. Quite often also nonlin-
earities might be neglected during the modeling phase: in



this case the trajectory planning algorithm and the control
loop are required to compensate for the model-plant mis-
matches.

The main idea behind the technique used in this paper is
to augment the plant dynamic model with the partial deriva-
tives of the ODE (Ordinary Differential Equation) system
with respect to a parameterη of choice. These partial
derivatives are called sensitivity functions. By imposing
that their values must be zero at a given point of a trajectory,
the robustness with respect to the parameterη is increased.
The effectiveness of this approach has been shown both nu-
merically [25], [24], and experimentally [26] but only for
the design of closed-loop control strategies for linear sys-
tems. For this reason the procedure followed in the afore-
mentioned papers cannot be applied to the test cases used
here, which involve nonlinear systems.

The procedure used to solve the robust optimization
problem starts form an augmentation of the system of or-
dinary differential equationsΩ(x, t, η) that describe the dy-
namics of the plant under consideration, which is also in-
fluenced by a parameterη.

If Ω(x, t, η) has continuous first partial derivatives with
respect toη andx, andη0 is the nominal value ofη, the time
evolution ofx(t) from the initial statex0 can be evaluated
as:

x(t, η) = x0 +
∫ t

t0

Ω(s, x(s), η)ds (10)

The partial derivatives of the latter with respect to the
parameterη are:

xη(t, η) =

∫ t

t0

∂Ω(s, x(s, η), xη)

∂x
+

Ω(s, x(s, η), η)
∂η

ds

(11)

in whichxη =
∂x(t, η)

∂η
and

∂x0
∂η

= 0. The partial deriva-

tives of eq. (11) with respect to time can be therefore writ-
ten in the form:

∂xη(t, η)

∂t
= A(t, η)xη(t, η) + B(t, η) (12)

in which:

A(t, η) =
∂Ω(x, t, η)

∂x

∣

∣

∣

∣

x=x(t,η)
; B(t, η) =

∂Ω(x, t, η)

∂η

∣

∣

∣

∣

x=x(t,η)

Now, using the definitionS(t) := xη(t), eq. (12) can be
rewritten as:

Ṡ(t) = A(t, η)S(t) + B(t, η) (13)

S(t), i.e. the solution of eq. (13) is the vector of sensi-
tivity functions of the ODE systemΩ(x, t, η), i.e. the func-
tions used to evaluate the effect of a variation of the value of

parameterη on the dynamics of the system. Now an aug-
mented system of differential equations can be composed
by joining equation (1) with the system in equation (13):

[

ẋ(t)
Ṡ(t)

]

=

[

Ω(x(t), t, u, η)
A(t, η)S(t, η) + B(t, η)

]

(14)

It should be highlighted that the definition of the sen-
sitivity equations allows to calculate in a straightforward
manner eq. (14), since:

S(t) :=
∂x(t)
∂η

; Ṡ(t) =
d

dt

∂x(t)
∂η

;

A(t, η)S(t, η) + B(t, η) =
∂Ω(x(t), t, u)

∂η

(15)

In the cases under consideration here the uncertain pa-
rameter is just one,η, but the method shown here allows
to take into consideration an arbitrary number of uncertain
parameters. Ifx(t) ∈ ℜn, and there arem uncertain param-
eters, than simplyS(t) ∈ ℜnm.

Now the optimization problem in equation (3) can be re-
formulated by including the sensitivity conditions as well:























































min J(x(t), S(t), t, u) = min
tf
∫

t0

f(x, S, t, u)dt

s.to.
x(t0) = α
x(tf ) = β
S(t0) = 0
S(tf ) = 0
ẋ(t) = Ω(x(t), t, u)
Ṡ(t) = A(t, η)S(t, η) + B(t, η)

(16)

The difference between equation (3) and (16) is that the
latter problems include a larger number of constraints. As
it will be shown in the following, by imposing that the sen-
sitivity function are equal to zero at the beginning and at
the end of the trajectory, the parametric robustness of the
planned trajectory can be improved.

Here parametric robustness is intended as the robustness
of the solution with respect to a deviation of an uncertain
parameter of the plant from its nominal value. Two different
metrics are used to quantify the parametric robustness: in
section III the metric is the maximum amplitude of residual
vibration, while for the test case included in section IV the
metric is the residual energy of the system.

A brief outline of the procedure to be followed to synthe-
size a robust trajectory can be:
1. Define the dynamics of the plant
2. Define the uncertain parameter and the sensitivity func-
tions according to eq. (15)
3. Define augmented dynamics of the system with sensitiv-
ity functions



4. Compute the Hamiltionian of the augmented system ac-
cording to eq. (8)
5. Define the boundary conditions
6. Solve numerically the optimization problem in eq. (16)

III. Numerical results: unconstrained solution

In order to show the effectiveness of the robust approach
by the use of sensitivity functions, a simple test case is taken
into consideration. The mechanic system is a single mass
system coupled to a rigid structure by a nonlinear spring,
as in Figure 1. This system is chosen to represent the class
of systems with low-frequency nonlinear oscillators, like
gantry cranes [30], tape drives or tanks with slosh. The
nonlinearity of the system is due to the nonlinear elastic
force exerted by the spring, which is:

F = kq + kq3 (17)

beingq(t) the displacement of the mass from the rest po-
sition andk is the elastic constant of the pring. Ifu(t) is the
external force applied to the mass, the differential equation
that describes the dynamics of the system is the second-
order differential equation:

mq̈ = −kq − kq3 + u (18)

The second-order ODE in equation (18) can be written
in its first-order version by choosing the state vectorx as
x = [q̇, q]T . With this choice the ODE system that will be
used to compute the optimal trajectory is:

ẋ =

[

−
k

m
(q + q3) +

u

m
q̇

]

(19)

The system in eq. (19) can be augmented by including
the two sensitivity function of the state vectorx with re-
spect to the elastic constantk, according to the notation of
equation 14:

d

dt

(

∂q̇

∂k

)

= −
1

m
(q + q3)−

k

m

∂q

∂k

(

1 + 3q2
)

d

dt

(

∂q

∂k

)

=
∂q̇

∂k

(20)

In this formulation the vector of sensitivity functions is

S(t) =

[

∂q̇

∂k
,
∂q

∂k

]T

. Therefore the TPBVP must be for-

mulated considering as the plant dynamics the augmented
ODE:





ẋ(t)

Ṡ(t)
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−
k

m
(q + q3) +

u

m
q̇

−
1

m
(q + q3)−

k

m

∂q

∂k

(

1 + 3q2
)

∂q̇

∂k



















(21)
Now the number of ODE is four, therefore the applica-

tion of the PMP requires to use four Lagrangian multipli-
ers. The solution of the optimization problem in the nom-
inal and robust cases leads to the definition of the trajec-
tories shown in figure 3. The boundary conditions chosen
are: q̇(0) = q̇(tf ) = 0, q(0) = 1 andq(tf ) = 0. There-
fore a rest-to-rest motion is implemented. The force profile
u(t), shown in figure 2 computed together with the solution
of the optimization problem has been applied to two per-
turbed plants, having values of the spring stiffness equal to
k = 1.4 N/m andk = 0.6 N/m, therefore in the cases of
a parametric mismatch equal to±40%. This test allows to
evaluate the robustness of the computed trajectories. The
response of the system withk = 1.4 N/m is shown in
fig. 4. It can be clearly seen that in that case the residual
vibration, i.e. the mass displacement after 2 seconds is no-
tably larger in the non-robust case than in the robust case.
An ever smaller residual vibration is obtained in the case
depicted in figure 5: the vibration amplitude after the task
completion is almost equal to zero.

Fig. 1. Testbench I: nonlinear oscillator

A more complete comparison in terms of residual vi-
bration is shown in figure 6, in which the peak amplitude
of residual vibration are shown for a range of perturbation
equal to±70%. According to the works [24], [25], [26],
the maximum amplitude of residual vibration are used as a
measurement of the robustness of the proposed approach.
It can be seen in figure 6 that the robust trajectory allows
a sensible reduction of residual vibration for all the cases
taken into consideration. Moreover, null residual vibration
is preserved for the nominal value ofk by the robust tra-
jectory. The only drawback of the proposed approach is
the larger actuation force requirement, as it can be seen in
figure 2.

IV. Numerical results: constrained solution
As mentioned in the previous section, the robust solution

can have the drawback of requiring a larger force require-
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Fig. 3. Nominal and robust trajectory for nonlinear spring-mass system:
mass positionq
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Fig. 6. Peak residual vibration vibration withk ∈ [0.3, 1.7] N/m: com-
parison between nominal and robust trajectories

ment. This disadvantage can be compensated through the
inclusion of constraints in the solution of the optimization
problem. The method used to introduce constraints will be
shown here through another testbench problem. The struc-
ture of the mechanism is shown in figure 7. The system re-
produced an elastic joint of a robot with a nonlinear spring
characteristic. If∆q is the relative angular displacement
of the two inertiasJ1 andJ2, the force excerpted by the
torsional spring is:

F (∆q) = k(∆q +∆q3) (22)

This kind of model can be used to model a single joint of

Fig. 7. Testbench II: Nonlinear flexible joint



an industrial robot with elasticity, as reported in the works
[31], [32], [33]. Such model has also been used to repro-
duce the dynamics of an ABB IRB6600 industrial robot in
[4]. The dynamics of the system is:

J1q̈1 = k(q2 − q1) + k(q2 − q1)
3 + u

J2q̈2 = −k(q2 − q1)− k(q2 − q1)
3 (23)

in whichu is the motor torque applied to the first mass of
inertiaJ1, while the second mass has inertiaJ2. The speed
of rotation of the mass will be indicated asq̇1 or ω1 for the
first mass anḋq2 orω2 for the second mass. IfJ1 = J2 = 1,
the dynamics of the system in eq. 23 can be rewritten as:

ẋ =









k(q2 − q1) + k(q2 − q1)
3 + u

−k(q2 − q1)− k(q2 − q1)
ω1

ω2









(24)

The procedure shown in section 2 cannot be directly ap-
plied in this case if constraints are to included in the prob-
lem. This is due to the fact that the application of Pon-
tryagin’s minimum principle requires for the Hamltionian
to be differentiable in time with continuous derivatives in
x(t) andΛ(t), and therefore hard constraints cannot be ap-
plied using a saturation function. The proposed solution to
this situation is the use of a smoothing function.

First, let us take into consideration the nominal solution
of the trajectory planning problem without constraints. The
Hamiltonian of the systems for the minimum effort solution
is:

H = λ3ω1 − λ1(k(q1 − q2)− u+ k(q1 − q2)
3)

+λ4ω2 + λ2(k(q1 − q2) + k(q1 − q2)
3) +

u2

2

(25)

and the application of the condition in eq. (5) leads to:

∂H

∂u
= u+ λ1 (26)

The last equation highlights that the optimal control ac-
tion is u∗ = −λ1, therefore the system of ordinary differ-
ential equations to be solved is:

ẏ∗ =

























−λ1 − k(q1 − q2)− k(q1 − q2)
3

k(q1 − q2) + k(q1 − q2)
3

ω1

ω2

−λ3

−λ4

k(λ1 − λ2)(3q1
2 − 6q1q2 + 3q2

2 + 1)
−k(λ1 − λ2)(3q1

2 − 6q1q2 + 3q2
2 + 1)

























(27)

The problem defined in the last equation is uncon-
strained. A simple solution can be found to constrain one
or more of the state and lagrangians through the use of a

smooth saturation function. The definition of the saturation
function is:

sat(s, γ) =

{

s, |s| < γ
γsign(s), |s| > γ

(28)

which can be approximated as:

SAT (s, γ, ν) =
γ

2





√

ν +

(

s

γ
+ 1

)

2

−

√

ν +

(

s

γ
− 1

)

2





(29)

This approximation has been introduced and used by Av-
vakumov in [34] for the constrained solution of boundary
value problem. The quality of the approximation is in-
versely proportional to the constant positive parameterν.
Simple numerical evaluations show that a sufficiently good
approximation can be achieved forν = 1e − 6: for this
value ofν the approximation error, i.e. the difference be-
tween the ideal saturation function and its approximating
function, is less than2e − 4 for γ = 1. The application of
this approximated saturation function to the problem stated
in eq. (27) requires simply to substitute in itλ1 with the ex-
pression in eq. (29). This allows to limitλ1, and therefore
u∗, in the rangeu ∈ [−γ, γ].

In the following the results of the computation of the tra-
jectory planning algorithm are shown. The boundary con-
ditions are set in order to bring the two masses from the
initial position q1(t = 0) = 0.1 rad andq2(t = 0) = 0.1
rad toq1(t = tf ) = q2(t = tf ) = 0 rad with initial and
final speed equal to zero. Therefore a rest-to-rest motion is
planned. In this case the total execution time is chosen to be
tf = 2 s. The values ofu is limited in the range[−2.5, 2.5]
Nm for the constrained solution.

The control actionu is for the unconstrained and con-
strained case is shown in figure 8. The planned trajectory
is shown in Fig. 9. In particular, it can be seen that the
inclusion of constraints allows to precisely limit the ampli-
tude ofu: as imposed in the definition of the optimization
problem, the torque provided by the motor never exceeds
the prescribed value of 2.5 Nm. This result has been ob-
tained withν = 1× 10−9. It has been verified numerically
that lowering the value ofν does not improve the quality of
the solution. The actual trajectories for the unconstrained
and constrained solutions are similar to each other, as it can
be seen in Figure 5. In the constrained case the first mass
achieves a slightly higher speed than in the nominal case,
which is a direct effect of the torque limitation.

The application of the control profileu(t) shown in fig-
ure 8 to a nominal plant, i.e. to a plant in which the spring
stiffness is proportional tok = 1 Nm/rad is shown in
figure 10, which shows that zero residual vibration can be
achieved also in the presence of constraints.

On the other hand if a perturbed plant is taken into con-
sideration, and in particular if the value ofk is increased
by 30%, the application of the feedforward torque profile
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leads to the results show in figure 11. The analysis of this
plot highlights the presence of noticeable residual vibration
after motion completion, i.e. after 2 seconds from the sim-
ulation starting point. The peak-to-peak amplitude of resid-
ual vibrations is equal to0.056 rad, i.e. more than half of
the prescribed mass displacement for the whole motion. A
more complete evaluation of the residual vibration for the
constrained and the unconstrained solution is shown in fig-
ure 12 in terms of residual energy of the system at time
t = tf . The residual energyE is evaluated as the sum of
the kinetic energyT and the elastic energyU as:

E = T + U (30)

in which the kinetic energy is simply:

T =
1

2
(J1ω

2
1 + J2ω

2
2) (31)

while the elastic energy is:

U =

∫ ∆q∗

0

F∆qd∆q =

∫ ∆q∗

0

(k∆q + k3∆q)

= k

(

1

2
∆q∗2 +

1

4
∆q∗2

)
(32)

The residual energy is used in this section as a mea-
surement of the robustness of the outcome of the trajectory
planning algorithm. Under nominal conditions,i.e. without
any perturbations, the residual energy of the system must
be equal to zero, since the prescribed right-side boundary
condition isx(tf ) = β = [0, 0, 0, 0]T . Any deviation from
this value can be measured through the use of the residual
energy of the system, which can be seen as a norm of the
vectorx(td).

Figure 12 shows how the value of of the elastic constant
k affects the value of residual energy after task completion.
It can be seen in figure 12 that the residual energy is equal
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Fig. 12. Residual energy: unconstrained and constrained solutions, nom-
inal trajectory withk ∈ [0.3, 1.7] Nm/rad

to zero only fork = 1 N/m, and that the residual en-
ergy quickly grows with increasing and decreasing values
of k. This applies with very similar trends for both the
constrained and the unconstrained solutions. The follow-
ing part of the paper will show how the use of sensitivity
functions allows to improve the robustness of the computed
trajectories with respect to variations of the elastic constant
k.

As shown in the case of the simple mass-spring system,
the robustness of the solution of the trajectory generation
problem can be improved by imposing additional bound-
ary condition on the sensitivity function in the optimization
problem definition. Using the same procedure and applying
it to the elastic joint case, the sensitivity equations can be
computed as:

d

dt

(

∂ω1

∂k

)

= (q2 − q1) + (q2 − q1)
3+

+ k

(

∂q2
∂k

−
∂q1
∂k

)3

+ 3k

(

∂q2
∂k

−
∂q1
∂k

)

(q2 − q1)
2;

d

dt

(ω2

∂k

)

= −(q2 − q1)− (q2 − q1)
3

− k

(

∂q2
∂k

−
∂q1
∂k

)3

− 3k

(

∂q2
∂k

−
∂q1
∂k

)

(q2 − q1)
2;

d

dt

(

∂q1
∂k

)

=
∂ω1

∂k
;

d

dt

( q2
∂k

)

=
∂ω2

∂k
;

(33)

This choice of parametric uncertainty can be practically
useful in all the cases in which the elastic constant of the
flexible joint cannot be estimated with sufficient accuracy,
or in the cases in which variations of the elastic constant
are not described by the dynamic model used for trajectory
planning. The Hamiltonian of the system is therefore:

H = λ3ω1 − λ1

(

k(q1 − q2)− u+ k(q1 − q2)
3
)

+ λ4ω2 + λ7
∂ω1

∂k
+ λ8

∂ω2

∂k

− λ5

(

q1 − q2 + (q1 + q2)
2 + k

(

∂q1
∂k

−
∂q2
∂k

))

− 3λ5k(q1 − q2)
2

(

∂q1
∂k

−
∂q2
∂k

)

+ λ6

(

q1 − q2 + (q1 + q2)
2 + k

(

∂q1
∂k

−
∂q2
∂k

))

+ 3λ6k(q1 − q2)
2

(

∂q1
∂k

−
∂q2
∂k

)

+ λ2

(

k(q1 − q2) + k(q1 − q2)
3
)

+
u2

2
(34)

and the application of the condition of eq. (5) leads to
the optimal control:

u∗ = −λ1 (35)

Equations above refer to the unconstrained solution: hard
limits on the control action can be achieved by direct sub-
stitution ofλ1 with the smoothing function defined in eq.
(25). The complete formulation is here omitted due to
the limited space availability. Boundary conditions are the
same used for the nominal case, with the obvious addition
of constraints on the sensitivity functions. The total exe-
cution time has been increased to3.75 s in order to pro-
duce a trajectory with the same peak torque as the nomi-
nal one. The control profile evaluated through the solution
of the augmented TPBVP is shown in fig. 13: as in the
previously shown nominal case (see fig. 8) the smoothing
technique allows to precisely limit the control action in the
range[−2.5, 2.5] Nm. The same solution shown in terms
of joint positions is shown in figure 14: its accuracy is con-
firmed by the results available in figure 15, which shows the
results of the feedforward application of the planned control
profile. The absence of noticeable residual vibration high-
lights the accuracy of the solution when a nominal plant,
therefore withk = 1 Nm is taken into account. The appli-
cation of the same control profile to a plant with a stiffness
values increased by30% is reported in figure 16: the resid-
ual vibration has a peak-to-peak amplitude of 0.0161 rad,
which is 3.4 times smaller than the same value obtained un-
der the same conditions by the nominal trajectory, as visible
from the comparison between figures 16 and 11.

A comparison in terms of residual energy between the
nominal and robust solutions, with and without the appli-
cation of constraints, is shown in figure 17. The figure
shows how a change in the value of the elastic constantk
for a ±30% variation influences the residual energy after
motion completion. The analysis of the data presented in
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Fig. 13. Robust solution: torque for unconstrained and constrained solu-
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this graph allows to conclude that, for the case under con-
sideration, the inclusion of robustness conditions allows to
significantly reduce the sensitivity of the plant to paramet-
ric mismatches, and that the inclusion of hard constraints
on the actuator effort has a very limited effect on the ro-
bustness properties of the planned trajectory.

V. Conclusions
In this paper the problem of generating model-based ro-

bust trajectories for nonlinear mechatronic systems is dealt
with. The work proposed a method based on the use of
sensitivity function which allows to improve the robustness
to parametric mismatches to augment the classic approach
based on the solution of a two-point boundary value prob-
lem. Also the problem of including constraints is dealt with,
using an accurate smoothing technique. The effectiveness
of the approach is tested on two benchmark problem: a non-
linear mass-spring system and a nonlinear flexible joint ma-
nipulator. Results highlight that the proposed approach can
lead to a sensible improvement to parametric mismatches of
the planning trajectory, and that constraints can be included
with accuracy without affecting the parametric robustness
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Fig. 15. Joint trajectories for the nominal case: robust solutions
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robust solutions
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of the solution.
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for robust motion planning, Tasks and Methods in Applied Artificial
Intelligence (1998) 115–121.

[22] K. G. Shin, N. D. McKay, Robust trajectory planning for robotic
manipulators under payload uncertainties, Automatic Control, IEEE
Transactions on 32 (12) (1987) 1044–1054.

[23] B. Houska, Robust optimization of dynamic systems, Ph.D. thesis,
PhD thesis, Katholieke Universiteit Leuven, 2011.(ISBN: 978-94-
6018-394-2) (2011).

[24] T. Singh, Optimal reference shaping for dynamical systems: theory
and applications, CRC PressI Llc, 2010.

[25] T. A. Hindle, T. Singh, Desensitized minimum power/jerk control
profiles for rest-to-rest maneuvers, in: American Control Confer-
ence, 2000. Proceedings of the 2000, Vol. 5, IEEE, 2000, pp. 3064–
3068.

[26] R. Kased, T. Singh, Rest-to-rest motion of an experimental flexi-
ble structure subject to friction: Linear programming approach, in:
AIAA Guidance, Navigation and Control Conference, San Fran-
cisco, CA, 2005.

[27] L. Pontryagin, R. Gamkrelidze, The mathematical theory of optimal
processes, Vol. 4, CRC, 1986.

[28] L. Shampine, I. Gladwell, S. Thompson, Solving ODEs with MAT-
LAB, Cambridge University Press, 2003.

[29] R. W. Holsapple, A modified simple shooting method for solving
two-point boundary value problems.

[30] G. Boschetti, R. Caracciolo, D. Richiedei, A. Trevisani, A non-time
based controller for load swing damping and path-tracking in robotic
cranes, Journal of Intelligent & Robotic Systems (2014) 1–17.

[31] S. Moberg, On modeling and control of flexible manipulators, Ph.D.
thesis, Department of Electrical Engineering, Linkping University,
Sweden (2007).

[32] P. Axelsson, Evaluation of six different sensor fusion methods for an
industrial robot using experimental data, in: 10th International IFAC
Symposium on Robot Control, Dubrovnik, Croatia, 2012.

[33] P. Axelsson, M. Norrl̈of, E. Wernholt, F. Gustafsson, Extended
kalman filter applied to industrial manipulators, in: Proceedings of
Reglerm̈ote 2010, Lund, Sweden, 2010.

[34] S. Avvakumov, Y. N. Kiselev, Boundary value problem for ordinary
differential equations with applications to optimal control, Spectral
and Evolution Problems 2000 10.


