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Abstract—In this paper the topic of robust model based low peak values of jerk [15].
trajectory planning for mechatronic systems is dealt with. Model-based approach have been studied in a large num-
The aim is to improve, using sensitivity techniques, the ro- ber of works, with applications to basically every kind of
bustness to parametric mismatches of commonly used in-robot. The solution of the planning problem has been in-
direct variational methods. The necessary optimality con- vestigated for mobile robots in papers such as [16]. Flexible
ditions are derived using Pontryagin’s minimum princi- joint robot have been considered in [17], [18]. Also the de-
ple, and the robustness condition are obtained by imposing sign of trajectories for Flexible-Link Manipulators (FLM)
boundary constraints on sensitivity functions. Unlike other have been studied quite extensively [19]. Approaches based
methods available in literature, the proposed method can be on the definition and the solution of Two-Point Boundary
applied to nonlinear models. Several test cases are reported Value Problems (TPBVP) have been developed, among oth-
to show the unconstrained and the constrained solution for ers, in [20], [9]. In these works a point-to-point trajectory

nonlinear mechatronic systems. is computed by solving a constrained optimization prob-
Keywords: trajectory planning, robust, nonlinear system lem, by imposing that the trajectory must connect the two
boundary points while respecting the robot dynamics.
|. Introduction In this work a solution to the problem of computation

of constrained point-to-point trajectories is analyzed using
TPBVP techniques, but with a particular focus on the ro-
bustness of the solution to parametric uncertainties. The
topic of robustness have been extensively studied in the area
of closed-loop control. The literature on the topic is very
extensive, but to the best of authors’ knowledge, there are
very few works that specifically focus on robust trajectory
planning algorithms.

One example is [21], in which robustness is achieved by
introducing in the fitness function a term of Gaussian cumu-
lative noise. The work by Shin [22] focuses on the defini-
tion of robot trajectories by taking into account the uncer-

High speed and high efficiency robotics cannot be
achieved without the use of clever closed-loop control sys-
tem and smooth trajectory planning. This factors are even
more important if the robot presents some sort of structural
flexibility, since the presence of oscillations even after the
completion of the task can severely reduce the operative-
ness of the robot [1], [2], [3]. This flexibility, which might
be due to the joint [4] or link [5], [6] mechanical struc-
ture, is the source of several challenging problems. Exten-
sive research have been developed to find a solution to the
problem of vibration phenomena through the generation of

suitable trajectories, as reported in the review papers [7], tainties brought by payload variations through the change

[8]. In this sense, a main distinction can be made among f bound ioint Other int i h
model-based and model-free approaches. The advantage0 ounds on joint forques. er interesting approaches

of the first method is that the results can be easily adapted to .robust trajectory planning are cu.rre.ntly' available as S0-
to several robots, and that the results are independent fromlmIons tg the problgm of rob_ust optimization for dyngmlc
the knowledge of the accurate dynamics of the robot. On systems: an extensive overview of this problem is available
the other hand, this kind of approach can potentially lead to in [23]. ) _ ) _
high level of performance, even for high complexity models Thg aim of th|.s paperis to propose a method for planning
[9], [10]. The majority of this works are based on optimal @ trajectory which is based on two-point boundary value
control theory, and therefore they often limited in their ro- _problem_s and on the concep_t of desensmzatlon._ Sensitiv-
bustness properties, as highlighted in [11]. In this means 'Y function have been used in [24], [25], [26] to improve
that a trajectory that is optimal in the nominal case, can be (e robustness of closed-loop optimal controllers. The de-
disadvantageous in if applied to a perturbed plant. sign pf s.uch controllersis QOne analytically, since a sqluuon
Most model-free approaches are based on geometricaIOf this kind can be found is the plant taken into considera-

approaches, i.e. the trajectory is based on the compositiontion is linear. It must be high”ghted that the methpd pro-
of polynomial functions [12], [13], splines [8] or nurbs [14]. posed here applles to noplmgar plants, therefore it greatl_y
Generally this approaches are targeted at maximizing the enhances the field of application of the method presented in

smoothness of the trajectory by obtaining continuous and [24], [2_5]’ [26.]' ) )
The inclusion of constraints on actuator action also plays

*alessandro.gasparetto@uniud.it an important role in most real-world applications, in which



the actuator’s capabilities must be exploited up to their full  inwhich A(t) = [A\i(¢), ..., An(#)]T is the vector of La-
potential and without violating the actuator’s safe operating grangian multipliers, called also costate vector, which has
area. Among the techniques presented in the papers [24],the same size of the state vector The necessary condi-
[25], [26],the only one that allows to include constraints is tions for finding a minimum of the problem in Eq. (3) are,
[26], but the method used to limit the control action in that according to the PMP:

paper cannot be directly applied to the class of problems

considered in this work. oH _ 0 (5)
The outcome of the approach presented in this paper is ou
a position profile for the system to be operated that can be N
used by most industrial PLC-based controller. X = N (6)
I1. Variational solution of thetrajectory planning prob-
: OH

The target here is to develop an optimal trajectory for a
mechatronic system. We consider here point-to-point tra-  The above conditions can be put in a single system that
jectory optimization problems, in which only the initial and  Makes the computation straightforward. By definirighe
final end-effector positions are given, and the manipulator Solution of equation (5)1*(x, ¢, A) is the Hamiltonian in
is free to move between them. Therefore both the path and Whichu has been substituted with. 7* is called the min-
the trajectory are subject to optimization, and they are se- imizing Hamiltonian. A new system of ordinary differential

lected with the aim of minimizing a cost functional. Such
cost may depend on execution time, actuator effort, jerks
(or torque rates), or a combination of these variables. First
of all, let us define the optimization problem that we want
to solve. Given a dynamic system, that might be linear or
nonlinear, described by a set of differential equation in the
form:

X = Q(x,t,u) 1)

in which x is the vector of state variables of the system,
andu is the control vector. If we choose a cost function:

J = f(x,t,u)

the following optimization problem can be stated:

)

23
min J(X(¢),¢,u) = min [ f(X,t,u)dt
to

f((t()) =« (3)
X(ty) =P
X(t) = Q(x(¢),t,u)

in which o and 3 are some constant vector of the same
size ofx used to define the initial and final conditions for
the dynamic system. The solution of this optimization prob-
lems allows to find the trajectory for the state vectdhat
minimizes the cost functiorl. The trajectory is constrained
to respect the dynamics of the systélx,¢,u) and the
value ofx at the initial (¢t = ¢¢) and final (t= ¢) time.
A solution of the optimization problem in equation (3) can
be found using the calculus of variations and Pontryagin’s
Minimum Principle (PMP) [27].

First of all, the Hamiltonian of the system must be de-
fined as:

H = f(X,t,u) +X)TQ(x(t),t,u) (4)

equation can be defined as:

OH*
oA

_On”
ox

The new state vectoy is obtained by augmenting the
original state vectox with the vector of Lagrangian multi-
X

pliers:
=3 ©

Among the infinite possible trajectories of the dynamic
system in equation (1), we are interested in finding the
one that obeys to the boundary conditioti$)) = « and
X(ty) = B

A solution to this problem, that is basically a TPBVP
(Two-Point Boundary Value Problem), could theoretically
be found in closed form. In many cases, however, it is
solved numerically, given the difficulty of finding an ana-
Iytic solution. Collocation method [9], [28] and shooting
method [29] are often used for this task.

(8)

A. Robustness improvements with sensitivity functions
The problem presented and solved in the previous section
works very well when the dynamic model used for planning
the trajectory can reproduce faithfully the actual dynamics
of the real system. This does not happen in all situations,
given the difficulty of describing a complex plant with a rea-
sonably simple model. Moreover, sometimes it is not even
possible to describe the dynamics of the plant with just a
single model. A common situation is when a robot is driv-
ing a payload that changes, as in a pick & place operation.
As the mass carried by the robotic manipulator changes,
also its dynamic model is altered. Quite often also nonlin-
earities might be neglected during the modeling phase: in



this case the trajectory planning algorithm and the control

loop are required to compensate for the model-plant mis-

matches.

The main idea behind the technique used in this paper is

to augment the plant dynamic model with the partial deriva-
tives of the ODE (Ordinary Differential Equation) system
with respect to a parameter of choice. These partial

derivatives are called sensitivity functions. By imposing

that their values must be zero at a given point of a trajectory,

the robustness with respect to the parametisrincreased.

parameter; on the dynamics of the system. Now an aug-

mented system of differential equations can be composed

by joining equation (1) with the system in equation (13):
Q(x(t),t,u,n)

{ gg } { A(t,n)S(t,n) + B(t,n)

It should be highlighted that the definition of the sen-
sitivity equations allows to calculate in a straightforward
manner eq. (14), since:

(14)

The effectiveness of this approach has been shown both nu-

merically [25], [24], and experimentally [26] but only for

the design of closed-loop control strategies for linear sys-
tems. For this reason the procedure followed in the afore-
mentioned papers cannot be applied to the test cases used

here, which involve nonlinear systems.
The procedure used to solve the robust optimization

A(t,n)S(t,n) + B(t,n) = W

In the cases under consideration here the uncertain pa-

problem starts form an augmentation of the system of or- rameter is just oney, but the method shown here allows

dinary differential equation€(x, ¢, n) that describe the dy-
namics of the plant under consideration, which is also in-
fluenced by a parameter

If Q(x,¢,n) has continuous first partial derivatives with
respect ta) andx, andry is the nominal value of, the time
evolution ofx(t) from the initial statex, can be evaluated
as:

X(t, 1) = Xo +/ Q(s,x(s),n)ds

to
The partial derivatives of the latter with respect to the
parameter are:

(10)

¢ 89(53)((5’77)7)(77) Q(S7X(San)an)
XVI(ta 77) - /to ox + (9’[7 ds
(11)
inwhichx, = OX(L, ) and% = 0. The partial deriva-
o I

tives of eq. (11) with respect to time can be therefore writ-
ten in the form:

W = A(t,n)xy(t,n) + B(t,n) (12)
in which:
At ) = O x, t,m) B(ty) = O0(x, t,1)
’ O leoxemy M xex(em)

Now, using the definitiors(¢) := x,(t), eq. (12) can be
rewritten as:
S(t) = A(t,n)S(t) + B(t,) (13)

S(t), i.e. the solution of eq. (13) is the vector of sensi-
tivity functions of the ODE systef¥(x, ¢, ), i.e. the func-

to take into consideration an arbitrary number of uncertain
parameters. IX(t) € R"™, and there are: uncertain param-
eters, than simplg(t) € R"™.

Now the optimization problem in equation (3) can be re-
formulated by including the sensitivity conditions as well:

min J(x(t), S(t),t,u) = min tff f(x, S t,u)dt

s.to. K

X(to) = @

X(tr) =B (16)
S(to) =0

S(t;)=0

X(t) = Q(x(t),t,u)

S(t) = A(t,n)S(t,n) + B(t,n)

The difference between equation (3) and (16) is that the
latter problems include a larger number of constraints. As
it will be shown in the following, by imposing that the sen-
sitivity function are equal to zero at the beginning and at
the end of the trajectory, the parametric robustness of the
planned trajectory can be improved.

Here parametric robustness is intended as the robustness
of the solution with respect to a deviation of an uncertain
parameter of the plant from its nominal value. Two different
metrics are used to quantify the parametric robustness: in
section Il the metric is the maximum amplitude of residual
vibration, while for the test case included in section IV the
metric is the residual energy of the system.

A brief outline of the procedure to be followed to synthe-
size a robust trajectory can be:

1. Define the dynamics of the plant

2. Define the uncertain parameter and the sensitivity func-
tions according to eq. (15)

3. Define augmented dynamics of the system with sensitiv-

tions used to evaluate the effect of a variation of the value of ity functions



4. Compute the Hamiltionian of the augmented system ac-
cording to eq. (8) - k -

u
5. Define the boundary conditions —g(q +¢%) + m
6. Solve numerically the optimization problem in eq. (16) X(t) g

. = 1 k Oq
_ 32 (1 2
I11. Numerical results: unconstrained solution S(t) m(q +a) s ok (1+307)
In order to show the effectiveness of the robust approach 872

by the use of sensitivity functions, a simple test case is taken ) (21)

into consideration. The mechanic system is a single mass Now the number of ODE is four, therefore the applica-
system coupled to a rigid structure by a nonlinear spring, tion of the PMP requires to use four Lagrangian multipli-
as in Figure 1. This system is chosen to represent the classers. The solution of the optimization problem in the nom-
of systems with low-frequency nonlinear oscillators, like inal and robust cases leads to the definition of the trajec-
gantry cranes [30], tape drives or tanks with slosh. The tories shown in figure 3. The boundary conditions chosen
nonlinearity of the system is due to the nonlinear elastic are: 4(0) = 4(¢;) = 0, ¢(0) = 1 andq(t;) = 0. There-
force exerted by the spring, which is: fore a rest-to-rest motion is implemented. The force profile
u(t), shown in figure 2 computed together with the solution
3 of the optimization problem has been applied to two per-
F=kq+kq a7 turbed plants, having values of the spring stiffness equal to
k=14 N/m andk = 0.6 N/m, therefore in the cases of
beingq(t) the displacement of the mass from the rest po- a parametric mismatch equal 4610%. This test allows to
sition andk is the elastic constant of the pring.uft) is the evaluate the robustness of the computed trajectories. The
external force applied to the mass, the differential equation response of the system with = 1.4 N/m is shown in
that describes the dynamics of the system is the second-fig. 4. It can be clearly seen that in that case the residual
order differential equation: vibration, i.e. the mass displacement after 2 seconds is no-
tably larger in the non-robust case than in the robust case.
. 3 An ever smaller residual vibration is obtained in the case
m{ = —kq —kq" +u (18) depicted in figure 5: the vibration amplitude after the task
completion is almost equal to zero.
The second-order ODE in equation (18) can be written

in its first-order version by choosing the state veotas a,
X = [¢,q]*. With this choice the ODE system that will be
used to compute the optimal trajectory is: k o u
O_0O
% %\

x = l ) (19)

q

Fig. 1. Testbench I: nonlinear oscillator

The system in eq. (19) can be augmented by including A more complete comparison in terms of residual vi-

the two sensitivity function of the state vectonwith re- bration is shown in figure 6, in which the peak amplitude
spect to the elastic constakjtaccording to the notation of  of residual vibration are shown for a range of perturbation
equation 14: equal to+70%. According to the works [24], [25], [26],

the maximum amplitude of residual vibration are used as a
measurement of the robustness of the proposed approach.

d (0q 3 dq 5 It can be seen in figure 6 that the robust trajectory allows
dat \ok ) ~ _E(q ) - m ok (1+3¢7) a sensible reduction of residual vibration for all the cases
d (0q a4 (20) taken into consideration. Moreover, null residual vibration
dat \ok ) ~ ok is preserved for the nominal value bfby the robust tra-

jectory. The only drawback of the proposed approach is
the larger actuation force requirement, as it can be seen in

In this formulation the vector of sensitivity functions is ..
figure 2.

9q 0q]"
St = L%’ g);| - Therefore the TPBVP must be for- |\, merical results: constrained solution

mulated considering as the plant dynamics the augmented As mentioned in the previous section, the robust solution
ODE: can have the drawback of requiring a larger force require-
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ment. This disadvantage can be compensated through the
inclusion of constraints in the solution of the optimization
problem. The method used to introduce constraints will be
shown here through another testbench problem. The struc-
ture of the mechanism is shown in figure 7. The system re-
produced an elastic joint of a robot with a nonlinear spring
characteristic. IfAq is the relative angular displacement

of the two inertias/; and .J,, the force excerpted by the
torsional spring is:

F(Aq) = k(Aq+ Ag®) (22)

This kind of model can be used to model a single joint of

u.. 9, ds

h

Fig. 7. Testbench II: Nonlinear flexible joint



an industrial robot with elasticity, as reported in the works smooth saturation function. The definition of the saturation
[31], [32], [33]. Such model has also been used to repro- function is:
duce the dynamics of an ABB IRB6600 industrial robot in
[4]. The dynamics of the system is: sat(s,) = { 5 |s| <~ (28)
’ ysign(s), |s| >~
T = k(g2 —q1) + k(g2 —q)* +u 23)
Joda = —k(q2 — 1) — k(g2 — q1)?
in whichu is the motor torque applied to the first mass of

which can be approximated as:

inertia.J;, while the second mass has inetfia The speed SAT(sy) = ) (\/y R (f R 1>2 - %} . (E j 1)2>
of rotation of the mass will be indicated agor w; for the Y 2 v v
first mass and, or w, forthe second mass. Jf, = J; =1, (29)
the dynamics of the system in eq. 23 can be rewritten as: This approximation has been introduced and used by Av-
vakumov in [34] for the constrained solution of boundary
k(g2 — q1) + k(g2 — 1)° +u value problem. The quality of the approximation is in-
X —k(g2 — 1) — k(g2 — ¢1) (24) versely proportional to the constant positive parameter
w1 Simple numerical evaluations show that a sufficiently good
w2 approximation can be achieved for= 1le — 6: for this

The procedure shown in section 2 cannot be directly ap- Value ofv the approximation error, i.e. the difference be-
plied in this case if constraints are to included in the prob- tween the ideal saturation function and its approximating
lem. This is due to the fact that the application of Pon- function, is less thage — 4 for y = 1. The application of
tryagin’s minimum principle requires for the Hamltionian ~ this approximated saturation function to the problem stated
to be differentiable in time with continuous derivatives in N €4. (27) requires simply to substitute in\if with the ex-
x(t) andA(t), and therefore hard constraints cannot be ap- Pression in eq. (29). This allows to limit, and therefore

plied using a saturation function. The proposed solution to ©"» in the range: € [—v,7]. _
this situation is the use of a smoothing function. In the following the results of the computation of the tra-

First, let us take into consideration the nominal solution Jectory planning algorithm are shown. The boundary con-

of the trajectory planning problem without constraints. The ditions are set in order to bring the two masses from the

Hamiltonian of the systems for the minimum effort solution  initial positiong, (¢ = 0) = 0.1 rad andgy(t = 0) = 0.1
is: rad tog: (t = t5) = g2(t = ty) = 0 rad with initial and

final speed equal to zero. Therefore a rest-to-rest motion is
planned. In this case the total execution time is chosen to be

H = Asw1 — Ai(k(q — @2) —u+ k(g — g2)%) t; = 2's. The values of; is limited in the rangé—2.5, 2.5]
s w2 (25) Nm for the constrained solution.
+Agwa + A2 (k(qr — q2) + k(g1 — q2)°) + 5 The control actionu is for the unconstrained and con-

strained case is shown in figure 8. The planned trajectory

and the application of the condition in eq. (5) leads to:  js shown in Fig. 9. In particular, it can be seen that the
N inclusion of constraints allows to precisely limit the ampli-
— =u-+ )\ (26) tude ofu: as imposed in the definition of the optimization

. 8u . . problem, the torque provided by the motor never exceeds
The last equation highlights that the optimal control ac-  he prescribed value of 2.5 Nm. This result has been ob-

tionisu” = —A;, therefore the system of ordinary differ-  5ined withy = 1 x 10-7. It has been verified numerically
ential equations to be solved is: that lowering the value of does not improve the quality of
the solution. The actual trajectories for the unconstrained

r A1 — k(g1 — q2) — kg1 — ¢2)° T and cons_trair_led solutions are simila_r to each other,_as itcan
k(g1 — q2) + k(g1 — g2)® be seen in Figure 5. In the constrained case the first mass
w1 achieves a slightly higher speed than in the nominal case,
. wo which is a direct effect of the torque limitation.
y = W @7) The application of the control profile(¢) shown in fig-
M\ ure 8 to a nominal plant, i.e. to a plant in which the spring
k(A1 — A2)(3q12 — 6q1go + 322 + 1) §tiffness is proportional td =1 Nm/md i§ shpwn in
—k(A — A2) (312 — 6q1q2 + 3g2% + 1) figure 10, which shows that zero residual vibration can be

achieved also in the presence of constraints.
The problem defined in the last equation is uncon-  On the other hand if a perturbed plant is taken into con-
strained. A simple solution can be found to constrain one sideration, and in particular if the value bfis increased
or more of the state and lagrangians through the use of aby 30%, the application of the feedforward torque profile
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leads to the results show in figure 11. The analysis of this
plot highlights the presence of noticeable residual vibration
after motion completion, i.e. after 2 seconds from the sim-
ulation starting point. The peak-to-peak amplitude of resid-
ual vibrations is equal t6.056 rad, i.e. more than half of
the prescribed mass displacement for the whole motion. A
more complete evaluation of the residual vibration for the
constrained and the unconstrained solution is shown in fig-
ure 12 in terms of residual energy of the system at time
t = ty. The residual energy is evaluated as the sum of
the kinetic energyl” and the elastic enerdy as:

E=T+U (30)

in which the kinetic energy is simply:

1
T = 5(le% + Jow3) (31)

while the elastic energy is:

Ag* Ag” .
U= / FAqdAq = / (kAq + k*Aq)
0 0 (32)

_ 1 *2 1 *2
—k<2Aq +4Aq )

The residual energy is used in this section as a mea-
surement of the robustness of the outcome of the trajectory
planning algorithm. Under nominal conditions,i.e. without
any perturbations, the residual energy of the system must
be equal to zero, since the prescribed right-side boundary
condition isx(t;) = 8 = [0,0,0,0]”. Any deviation from
this value can be measured through the use of the residual
energy of the system, which can be seen as a norm of the
vectorx(ty).

Figure 12 shows how the value of of the elastic constant
k affects the value of residual energy after task completion.
It can be seen in figure 12 that the residual energy is equal
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Fig. 12. Residual energy: unconstrained and constrainedios, nom-

inal trajectory withk € [0.3,1.7] Nm/rad 2

+ A2 (k(q1 — q2) + k(g1 — q2)%) + % (34)

to zero only fork = 1 N/m, and that the residual en-

ergy quickly grows with increasing and decreasing values ~ and the application of the condition of eq. (5) leads to

of k. This applies with very similar trends for both the the optimal control:

constrained and the unconstrained solutions. The follow-

ing part of the paper will show how the use of sensitivity u* = =\ (35)

functions allows to improve the robustness of the computed ) ] )

trajectories with respect to variations of the elastic constant  Equations above refer to the unconstrained solution: hard

k. limits on the control action can be achieved by direct sub-
As shown in the case of the simple mass-spring system, stitution of A; with the smoothi_ng f_unction def_ined in eq.

the robustness of the solution of the trajectory generation (25)- The complete formulation is here omitted due to

problem can be improved by imposing additional bound- the limited space avalla.blllty. Bounqlary condlt}ons are _the

ary condition on the sensitivity function in the optimization Same used for the nominal case, with the obvious addition

problem definition. Using the same procedure and applying of constraints on the sensitivity functions. The total exe-

it to the elastic joint case, the sensitivity equations can be cution time has been increased3d’5 s in order to pro-
computed as: duce a trajectory with the same peak torque as the nomi-

nal one. The control profile evaluated through the solution
of the augmented TPBVP is shown in fig. 13: as in the

S g - )3 previously shown nominal case (see fig. 8) the smoothing
(%) =@+ - a) lously sh inal case (see fig. §) the smooth
dt \ ok technique allows to precisely limit the control action in the
o2 O \° g2 Oq ) range[—2.5,2.5] Nm. The same solution shown in terms
k (8k: - 8k> + 3k (81@ - 8kz> (g2 —q1)% of joint positions is shown in figure 14: its accuracy is con-
d firmed by the results available in figure 15, which shows the
L (¥2) 2 (@2 —q1) — (@2 —q1)? results of the feedforward application of the planned control
dt \ Ok q2 — q1 q2 — q1 ! ) . : : _
3 profile. The absence of noticeable residual vibration high-
(02 _On\" 4 (0% _On (g2 — )2 lights the accuracy of the solution when a nominal plant,
ok Ok ok Ok Yo therefore withk = 1 Nm is taken into account. The appli-
d (0q A cation of the same control profile to a plant with a stiffness
at (ak) = ok’ values increased 80% is reported in figure 16: the resid-
d O ual vibration has a peak-to-peak amplitude of 0.0161 rad,
o7 (%) = 8—;; which is 3.4 times smaller than the same value obtained un-
¢ (33) der the same conditions by the nominal trajectory, as visible

from the comparison between figures 16 and 11.

This choice of parametric uncertainty can be practically A comparison in terms of residual energy between the
useful in all the cases in which the elastic constant of the nominal and robust solutions, with and without the appli-
flexible joint cannot be estimated with sufficient accuracy, cation of constraints, is shown in figure 17. The figure
or in the cases in which variations of the elastic constant shows how a change in the value of the elastic congtant
are not described by the dynamic model used for trajectory for a +£30% variation influences the residual energy after
planning. The Hamiltonian of the system is therefore: motion completion. The analysis of the data presented in



5 T T T T T T T

-+ = q, unconstrained

~ — d, unconstrained| |

q, constrained

——— q, constrained

torque [Nm]

a;. g, [rad]

k=1Nm/rad |

time [s]

6 8 10 12

Fig. 13. Robust solution: torque for unconstrained and caim&d solu-
tions . . . . . .
Fig. 15. Joint trajectories for the nominal case: robust solutions

0.25 . . - ay unconstrained
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0.2

q, constrained

'A —q, constrained
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0.25

- = q, unconstrained

0.2 — - — g, unconstrained |

q, constrained
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o
2

0.1

0.05

q,. a, [rad]

015 . . . . . . . -0.05
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time [s]
-0.1
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Fig. 14. Planned trajectory: robust solutions o 2 P 5 s 10 12
time [s]

this graph allows to conclude that, for the case under con- Fig. 16. Joint trajectories for the perturbed plant-f:1.3 Nm /rad):
sideration, the inclusion of robustness conditions allows to obust solutions
significantly reduce the sensitivity of the plant to paramet-

ric mismatches, and that the inclusion of hard constraints

on the actuator effort has a very limited effect on the ro-

bustness properties of the planned trajectory. 0014 ‘ ‘

— = nominal unconstrained

V. Conclusions R o
In this paper the problem of generating model-based ro- robust constrained

bust trajectories for nonlinear mechatronic systems is dealt

with. The work proposed a method based on the use of

sensitivity function which allows to improve the robustness

to parametric mismatches to augment the classic approach

0.01-

0.008 -

0.006

residual energy [J]

based on the solution of a two-point boundary value prob- 0.004}

lem. Also the problem of including constraints is dealt with,

using an accurate smoothing technique. The effectiveness 002)

of the approach is tested on two benchmark problem: a non- 0\ ‘

linear mass-spring system and a nonlinear flexible joint ma- 0 ecoonsantk Nmiag

nipulator. Results highlight that the proposed approach can

lead to a sensible improvement to parametric mismatches of Fig. 17. Comparison of the residual energy between nominal, nominal
the planning trajectory, and that constraints can be included constrained, robust and robust constrained solutions

with accuracy without affecting the parametric robustness



of the solution.
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