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Abstract In this paper the evolution of a dynamic model for flexible multibody

systems is presented. This model is based on an equivalent rigid-link system (ERLS)

and, in the first formulation, has been exploited together with a FEM approach for

the modeling of planar flexible-link mechanisms. Subsequently, the model has been

linearized in order to be applied for control purposes and then it has been extended to

the three-dimensional case. In the last years, a modal approach has been developed

and the ERLS concept has been applied in order to formulate the dynamics of spatial

flexible mechanisms with a component mode synthesis (CMS) technique.
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1 Introduction

In the last 20 years, the demand for high speed operations of mechatronic systems

has pushed the study of dynamic models and controllers for flexible multibody sys-

tems. An approach to model multibody dynamics is based on a rigid-body model

of the mechanism, to which elastic deformations are added to take link flexibility

into account: this yields a coupled set of non-linear partial differential equations. In

order to obtain a finite-dimensional problem formulated by a set of ordinary differ-

ential equations from these partial differential equations, two approaches have been

proposed in the literature, namely the “nodal” and the “modal” approach [7, 8, 14,

18–22, 24, 31].

Although very popular, the latter approach has the drawback to yield a system of

coupled differential equations with no separation between the rigid-body motion and

the elastic deformation of the flexible body. The authors of this paper carried out,

throughout a period of almost 30 years, extensive research that led to the formulation

and experimental validation of a dynamic model based on the nodal approach.

The model is based on the concept of Equivalent Rigid-Link System (ERLS), first

introduced in [6, 26, 27]. The first studies and the original formulation of the model

(2D case) were done by Giovagnoni and Rossi in the 1980s [15, 16]. Giovagnoni val-

idated the model for a 4-link flexible mechanism in 1994 [17]. Gasparetto validated

the model for a 5-link flexible mechanism [11], linearized the original model [10]

and used the model to test some controllers [1–5, 9, 12, 23, 25, 32]. Vidoni et al.

[28, 29] extended the model to the 3D case and developed an efficient simulator

of flexible multibody systems based on the extended model [13]. Lately, the ERLS

principle was used to develop a modal approach to the dynamic modelling of flexible

multibody systems [30].

2 The Original Dynamic Model

The dynamic model of flexible link multibody systems was originally developed for

planar mechanisms [15, 16]. Every link is divided into finite elements, and the elas-

tic displacements are defined with respect to an Equivalent Rigid Link Mechanism

(ERLS), as shown in Fig. 1.

In Fig. 1, u⃗ is the nodal displacement vector and the vector r⃗ contains the positions

of the nodes belonging to the ERLS. The vector p⃗ of the position of the generic

point of the finite element is given by adding the vector w⃗ of the position of the

corresponding point in the ERLS to the elastic displacement v⃗:

p⃗ = w⃗ + v⃗ (1)

Similarly, the displacements and the rotations at the nodes are given by the sum of

the ERLS position and the elastic displacements:
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Fig. 1 Model of the

dynamic system

⃗b = u⃗ + r⃗ (2)

Similar relations hold for the infinitesimal displacements dp⃗ and d⃗b.

The position, velocity and acceleration of the ERLS are functions of the vector q⃗
of the free coordinates:

dr⃗ = ⃗S(q⃗)dq⃗ (3)

⃗ṙ = ⃗S(q⃗)⃗q̇ (4)

⃗r̈ = ⃗S(q⃗)⃗q̈ + ⃗
̇S(q⃗, ⃗q̇)⃗q̇ = ⃗S(q⃗)⃗q̈ +

(∑
k
q̇k

𝜕
⃗S

𝜕qk

)
(5)

where ⃗S(q⃗) is the matrix of the sensitivity coefficients for all the nodes. Once the

kinematics has been defined, the dynamic equations of motion for the flexible mech-

anism can be obtained by applying the principle of virtual work:

dWinertia + dWelastic + dWexternal = 0 (6)

From Eq. (6), according to [5], two dynamic equations of motion can be obtained:

du⃗T ⃗M(⃗r̈ + ⃗ü) + 2du⃗T ⃗MG
⃗u̇ + du⃗T ⃗Ku⃗ = du⃗T (⃗fg + ⃗f ) (7)

dr⃗T ⃗M(⃗r̈ + ⃗ü) + 2dr⃗T ⃗MG
⃗u̇ + du⃗T ⃗Ku⃗ = dr⃗T (⃗fg + ⃗f ) (8)

where ⃗M is the mass matrix, ⃗MG the Coriolis matrix, ⃗K the stiffness matrix of the

mechanism; ⃗fg is the gravity vector and ⃗f the vector of the external loads applied to the

mechanism. Equation (7) formulates the nodal equilibrium, namely equivalent loads

applied to every node must be in equilibrium. Equation (8) formulates the overall

equilibrium, namely for any virtual displacement of the ERLS all the equivalent

nodal loads produce no work. By expressing the infinitesimal displacements of the

ERLS in terms of the sensitivity coefficient matrix, as in Eq. (3), the du⃗’s and the

dr⃗’s can be cancelled from Eqs. (7) and (8), thus obtaining:

⃗M(⃗r̈ + ⃗ü) + 2 ⃗MG
⃗u̇ + ⃗Ku⃗ = (⃗fg + ⃗f ) (9)

d⃗ST ⃗M(⃗r̈ + ⃗ü) + 2⃗ST ⃗MG
⃗u̇ = ⃗ST (⃗fg + ⃗f ) (10)



536 P. Boscariol et al.

which in matrix form can be written as:[
⃗M ⃗M⃗S

⃗ST ⃗M ⃗ST ⃗M⃗S

][
⃗ü
⃗q̈

]
=
[

t⃗(u⃗, ⃗u̇, q⃗, ⃗q̇)
⃗ST t⃗(u⃗, ⃗u̇, q⃗, ⃗q̇)

]
(11)

Equation (11) can be imported in a simulation environment, thus computing the val-

ues of the accelerations at each step by solving the system, and obtaining the values

of velocities and of displacements by integration.

The dynamic model described above was validated by means of experimental tests

on real flexible-link mechanisms, by comparing the values of accelerations and elas-

tic deformations experimentally measured with those obtained in simulation. The

model was validated using a chain of four flexible bodies [17] and a five-link elastic

mechanism, with two-degrees-of-freedom [11].

3 Linearization of the Model

A useful application of the dynamic model described above is the synthesis of con-

trollers for reducing the vibrations of flexible multibody systems. To be able to do

that, it is convenient to linearize Eq. (11), so as to bring the model into the state space

form. The linearization of the model [10] will be briefly described in the following.

The augmented state-space vector is taken as: ẋ(t) = [⃗u̇ ⃗q̇ u⃗ q⃗]T , so that Eq. (11)

becomes:

⎡⎢⎢⎢⎢⎣

⃗M ⃗M⃗S 0 0
⃗ST ⃗M ⃗ST ⃗M⃗S 0 0
0 0 ⃗I 0
0 0 0 ⃗I

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

⃗ü
⃗q̈
⃗u̇
⃗q̇

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

−2 ⃗MG − ⃗M⃗
̇S ⃗K 0

−2⃗ST ⃗MG
⃗ST ⃗M⃗S 0 0

⃗I 0 0 0
0 ⃗I 0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
⃗u̇
⃗q̇
u⃗
q⃗

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

⃗M ⃗I
⃗ST ⃗M ⃗ST
0 0
0 0

⎤⎥⎥⎥⎦
[
g⃗
⃗f

]
(12)

In a more compact form:

⃗A(x⃗(t))⃗ẋ(t) = ⃗B(x⃗(t))x⃗(t) + ⃗C(x⃗(t))v⃗(t) (13)

where the matrices ⃗A, ⃗B and ⃗C do not depend on the input vector v⃗. However, the

system in Eq. (12) is still non-linear, because the matrix
⃗
̇S contains the values of

the velocities ⃗q̇ of the free coordinates, so quadratic terms appear. If an equilibrium

point x⃗e, v⃗e is chosen, we can write: x⃗(t) = x⃗e + 𝛥x⃗(t), v⃗(t) = v⃗e + 𝛥v⃗(t), so Eq. (13)

becomes:

⃗A(x⃗e)𝛥⃗ẋ(t) = ⃗B(x⃗e + 𝛥x⃗(t))(x⃗e + 𝛥x⃗(t)) + ⃗C(x⃗e + 𝛥x⃗(t))(v⃗e + 𝛥v⃗(t)) (14)

where it has been taken into account that ⃗ẋe = 0 for definition of equilibrium point,

and the approximation: ⃗A(x⃗e + 𝛥x⃗(t))𝛥⃗ẋ(t) ≅ ⃗A(x⃗e)𝛥⃗ẋ(t) has been used. The final

expression for the system linearized about the equilibrium state is:
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⃗A(x⃗e)𝛥⃗ẋ(t) =

[
⃗B(x⃗e) +

(
𝜕
⃗B

𝜕x⃗

|||||x⃗=x⃗e ⊗ x⃗e

)
+

(
𝜕
⃗C

𝜕x⃗

|||||x⃗=x⃗e ⊗ v⃗e

)]
𝛥x⃗(t) + ⃗C(x⃗e)𝛥v⃗e(t) (15)

where the “⊗” symbol is meant to indicate the inner product of each vector[
𝜕Bi,1

𝜕xj
… 𝜕Bi,n

𝜕xj

]
x=xe

, for any i and j, by the vectors x⃗e and v⃗e. Once the equilibrium

point x⃗e is set, defining the matrices ⃗A(x⃗e),
⃗

⃗B(x⃗e) and ⃗C(x⃗e) is straightforward, and

the matrices

(
𝜕
⃗B

𝜕x⃗

||||x⃗=x⃗e ⊗ x⃗e

)
and

(
𝜕
⃗C

𝜕x⃗

||||x⃗=x⃗e ⊗ v⃗e

)
can be computed according to

their definitions.

The dynamic model described above was then used in order to test in simula-

tion several vibration controllers for flexible multibody systems. For instance, a PID

regulator [9], an optimal controller [12], a model predictive controller [1, 2, 23],

a delayed reference control [4], as well as hybrid controllers [3, 5, 25] were syn-

thesized and tested, yielding good results. Moreover, the model could be employed

in connection with innovative simulation techniques, such as the Hardware-in-the-

Loop [32].

4 Extension to the 3D Case

The dynamic model described in this paper was originally intended for planar mech-

anisms. However, although planar mechanisms are an important category of multi-

body systems (many industrial machines are based on planar mechanisms), it was

convenient to study a dynamic model for 3D mechanisms. As it is known, the exten-

sion from the 2D to the 3D case is not straightforward. The 3D dynamical model,

based on the considerations above extended to the 3D case, was described in [28, 29].

The extension to the 3D system was done by collocating several reference frames

along the kinematic chain, according to the Denavit-Hartenberg rules, and by defin-

ing the transformation matrices between any two consecutive frames. So, by using

a local to global transformation matrix ⃗Ri(q⃗), a block-diagonal rotation matrix ⃗Ti(q⃗)
and an interpolation function matrix ⃗Ni(x⃗i, y⃗i, z⃗i), one can compute the virtual dis-

placements in the fixed reference frame and the acceleration of a generic point inside

the i-th finite element.

As in the 2D case, after defining the kinematics, the dynamic equations of motion

can be computed by means of the principle of virtual work, by adding the inertial,

elastic and external generalized force terms:

dWinertia + dWelastic = −dWexternal
(16)

∑
i
∫vi

𝛿p⃗Ti ⃗p̈i𝜌idv⃗ +
∑
i
∫vi

𝛿𝜀

T
i
⃗Di𝜀idv⃗ =

∑
i
∫vi

𝛿p⃗Ti g⃗i𝜌idv⃗ + (𝛿u⃗T + 𝛿r⃗T )⃗f (17)
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where 𝜌i,
⃗Di and 𝜀i are the mass density, the stress-strain matrix and the strain vector

for the i-th element, g⃗ is the gravity acceleration vector and ⃗f is the vector of the

external forces and torques. As in the 2D case, the nodal elastic virtual displacements

𝛿u⃗ and virtual displacements of the ERLS 𝛿r⃗ are independent, which yields two set of

equilibrium equations, namely those expressing the local and the global equilibrium

at the nodes:

⃗M(⃗r̈ + ⃗ü) + 2( ⃗MG1 + ⃗MG2)⃗u̇ + ( ⃗MC1 + 2 ⃗MC2 + ⃗MC3)u⃗ + ⃗Ku⃗ = (⃗fg + ⃗f ) (18)

⃗JT ⃗M(⃗r̈ + ⃗ü) + 2⃗JT ( ⃗MG1 + ⃗MG2)⃗u̇ + ⃗JT ( ⃗MC1 + 2 ⃗MC2 + ⃗MC3)u⃗ = ⃗JT (⃗fg + ⃗f ) (19)

where ⃗M is the mass matrix, ⃗MG1 and ⃗MG2 are the Coriolis’ terms, ⃗MC1, ⃗MC2 and

⃗MC3 the centrifugal stiffness terms, ⃗K the stiffness matrix, ⃗J the Jacobian matrix, and

⃗fg the vector of the equivalent nodal loads due to gravity. In order to make the model

more realistic, Rayleigh damping was considered and inserted in the model, (𝛼 and

𝛽 coefficients). In matrix form, one can write:

[
⃗M ⃗M⃗J

⃗JT ⃗M ⃗JT ⃗M⃗J

][
⃗ü
⃗q̈

]
=

[
−2( ⃗MG1 + ⃗MG2) − 𝛼

⃗M − 𝛽
⃗K − ⃗M⃗

̇J −( ⃗MC1 + 2 ⃗MC2 + ⃗MC3) − ⃗K
⃗JT (−2( ⃗MG1 + ⃗MG2) − 𝛼

⃗M) −⃗JT ⃗M⃗J −⃗JT ( ⃗MC1 + 2 ⃗MC2 + ⃗MC3)

] ⎡⎢⎢⎣
⃗u̇
⃗q̇
q⃗

⎤⎥⎥⎦ +
[

⃗M ⃗I
⃗JT ⃗M ⃗JT

][
g⃗
⃗f

]

(20)

which can be used to run the integration-based simulations.

The 3D model was validated by means of experimental tests, by comparing the

measured accelerations and deformations with those provided by simulations [13].

5 From a Nodal to a Modal Approach

In the models described in the foregoing, either 2D or 3D, the ERLS concept has

been exploited together with a FEM approach, namely a nodal approach. The latest

studies developed an ERLS-based model which could be employed also within a

framework based on a modal approach [30]. In this way, one can obtain a more

flexible solution based upon a reduced-order system of equations. This is the first

work in the literature in which the ERLS concept is used to formulate the dynamics

of 3D flexible mechanisms with a component mode synthesis (CMS) approach. The

core of the method lies in expressing the nodal displacements u⃗i of the i-th link as

functions of a given number of eigenvectors ⃗Ui and modal coordinates q⃗i, namely:

u⃗i = ⃗Uiq⃗i (21)



Evolution of a Dynamic Model for Flexible Multibody Systems 539

By introducing the local-to-local transformation matrix ⃗Ti+1,i(𝜃) between the two

reference frames of the ELRS associated to the two consecutive links i and i + 1:

⃗ûi+1 = ⃗Ti+1,i ⃗ûi (22)

one obtains the following equation:

⃗Si+1 ⃗Ui+1q⃗i+1 = ⃗Ti+1,i(𝜃)⃗Si ⃗Uiq⃗i (23)

which can be rewritten as:[
−⃗Ti+1,i(𝜃)⃗Si ⃗Ui

⃗Si+1 ⃗Ui+1

] [ q⃗i
q⃗i+1

]
= 0 (24)

or:
⃗C(⃗𝜃)q⃗ = 0 (25)

where ⃗Si is the joint displacements selecting matrix, ⃗C(⃗𝜃) is a band-diagonal matrix,

q⃗ is the modal coordinate vector and ⃗
𝜃 is the joint parameter one. Starting from this, a

quite long dissertation is carried out, in order to get a model. This was then validated

by comparing the results of the simulator with those provided by ADAMS-Flex
TM

software for the same benchmark mechanism (a 3D L-shaped link).

6 Conclusions

In this work, the evolution of a dynamic model for flexible multibody systems,

from the original formulation in the 1990s up to the latest developments, was pre-

sented. The model is based on an equivalent rigid-link system and originally has

been exploited together with a FEM approach for the modeling of planar flexible-

link mechanisms. Subsequently, the model has been linearized for control purposes

and then it has been extended to the three-dimensional case. In the last years, a modal

approach has been developed and the ERLS concept has been applied in order to for-

mulate the dynamics of spatial flexible mechanisms with a component mode synthe-

sis (CMS) technique. In this way, a more flexible solution based upon a reduced-order

system of equations can be obtained.

References

1. Boscariol P, Gasparetto A, Zanotto V (2010) Active position and vibration control of a flexible

links mechanism using model-based predictive control. ASME J Dyn Syst Measur Control

132(1)

2. Boscariol P, Gasparetto A, Zanotto V (2010) Model predictive control of a flexible links mech-

anism. J Intell Robot Syst 58(2)

3. Boscariol P, Gasparetto A, Zanotto V (2011) Simultaneous position and vibration control sys-

tem for flexible link mechanisms. Meccanica 46(4)



540 P. Boscariol et al.

4. Boschetti G, Richiedei D, Trevisani A (2012) Delayed reference control applied to flexi-

ble link mechanisms: a scheme for effective and stable control. J Dyn Syst Measur Control

134(1):011003

5. Caracciolo R, Richiedei D, Trevisani A, Zanotto V (2005) Robust mixed-norm position and

vibration control of flexible link mechanisms. Mechatronics 15:767–791

6. Chang L, Hamilton J (1991) The kinematics of robotic manipulators with flexible links using

an equivalent rigid link system (ERLS) model. ASME J Dyn Syst Measur Control 113:48–53

7. Dietz S, Wallrapp O, Wiedemann S (2003) Nodal vs. modal representation in flexible multi-

body system dynamics. In: Jorge AC Ambrosio (ed) Proceedings of ECCOMAS thematic con-

ference multibody 2003—Advances in computational multi-body dynamics, vol MB2003-044,

Lisbon, Portugal: Instituto Superior Tecnico, IDMEC/IST, 1–4 July 2003

8. Dwivedy S, Eberhard P (2006) Dynamic analysis of flexible manipulators, a literature review.

Mech Mach Theory 41:749–777

9. Gallina P, Gasparetto A, Rosati G, Rossi A (2002) Design of a PID controller for a flexible five-

bar closed-chain planar manipulator. In: Proceedings of the 14th CISM-IFToMM symposium

on robotics—RoManSy 2002, Udine, 1–4 luglio 2002

10. Gasparetto A (2001) Accurate modelling of a flexible-link planar mechanism by means of

a linearized model in the state-space form for design of a vibration controller. J Sound Vib

240(2):241–262

11. Gasparetto A (2004) On the modeling of flexible-link planar mechanisms: experimental vali-

dation of an accurate dynamic model. ASME J Dyn Syst Measur Control 126(2):365–375

12. Gasparetto A, Zanotto V (2006) Vibration reduction in a flexible-link mechanism through syn-

thesis of an optimal controller. Meccanica 41(6):611–622

13. Gasparetto A, Kiaeian Moosavi SAH, Boscariol P, Giovagnoni M (2013) Experimental vali-

dation of a dynamic model for lightweight robots. Int J Adv Robot Syst 182:1–7

14. Ge S, Lee T, Zhu G (1997) Nonlinear feedback controller for a single-link flexible manipulator

based on finite element model. J Robot Syst 14:165–178

15. Giovagnoni M, Piccoli H, Rossi A (1987) Finite elements and sensitivity coefficients in flexible

planar linkage analysis. Meccanica 22:157–162

16. Giovagnoni M, Rossi A (1989) Transient analysis of a flexible crank. Mech Mach Theory

24(4):231–243

17. Giovagnoni M (1994) A numerical and experimental analysis of a chain of flexible bodies.

ASME J Dyn Syst Measur Control 116:73–80

18. Kalra P, Sharan A (1991) Accurate modeling of flexible manipulators using finite element

analysis. Mech Mach Theory 26:299–313

19. Martins J, Mohamed Z, Tokhi M et al (2003) Approaches for dynamic modelling of flexible

manipulator systems. In: Proceedings of the IEEE conference on control theory applications,

vol 150, July 2003, pp 401–411

20. Naganathan G, Soni A (1988) Nonlinear modeling of kinematic and flexibility effects in manip-

ulator design. ASME J Mech Transm Autom Des

21. Nagarajan S, Turcic D (1990) Lagrangian formulation of the equations of motion for elastic

mechanisms with mutual dependence between rigid body and elastic motions. Part I: Element

level equations. ASME J. Dyn Syst Measur Control

22. Shabana A (1997) Flexible multibody dynamics: review of past and recent developments.

Multibody Syst Dyn 1:189–222

23. Shojaei BE, Gasparetto A (2015) Predictive control of spatial flexible mechanisms. Int J Mech

Control 16(1)

24. Theodore R, Ghosal A (1995) Comparison of the assumed modes method and finite element

models for flexible multilink manipulators. Int J Robot Res 14:91–111

25. Trevisani A (2003) Feedback control of flexible four-bar linkages: a numerical and experimen-

tal investigation. J Sound Vib 268:947–970

26. Turcic D, Midha A (1984) Dynamic analysis of elastic mechanism systems. Part i: Applica-

tions. ASME J Dyn Syst Measur Control



Evolution of a Dynamic Model for Flexible Multibody Systems 541

27. Turcic D, Midha A (1984) Generalized equations of motion for the dynamic analysis of elastic

mechanism systems. ASME J Dyn Syst Measur Control

28. Vidoni R, Gasparetto A, Giovagnoni M (2013) Design and implementation of an ERLS-based

3-D dynamic formulation for flexible-link robots. Robot Comput Integr Manuf 29:273–282

29. Vidoni R, Gasparetto A, Giovagnoni M (2014) A method for modeling three-dimensional flex-

ible mechanisms based on an equivalent rigid link system. J Vib Control 20:483–500

30. Vidoni R, Gallina P, Boscariol P, Gasparetto A, Giovagnoni M (2015) Modeling the vibra-

tion of spatial flexible mechanisms through an equivalent rigid link system/component mode

synthesis approach. J Vib Control. Published online before print on September 9, 2015

31. Wang D, Lu Y, Liu Y et al (1996) Dynamic model and tip trajectory tracking control for a

two-link flexible robotic manipulator. In: Proceedings of the IEEE conference on system, man

and cybernetics, Beijing, 14–17 October 1996, pp 1020–1024

32. Zanotto V, Gasparetto A, Lanzutti A, Boscariol P, Vidoni R (2011) Experimental validation of

minimum time-jerk algorithms for industrial robots. J Intell Robot Syst 64(2):197–219


	Evolution of a Dynamic Model for Flexible Multibody Systems
	1 Introduction
	2 The Original Dynamic Model
	3 Linearization of the Model
	4 Extension to the 3D Case
	5 From a Nodal to a Modal Approach
	6 Conclusions
	References


