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In this work the kinematics of a large size tunnel digging matse of mechanical excavators and explosives [2]. The ex-
chine is investigated. The closed-loop mechanism is madedayation resulting form tunnel boring can represent a major
13 links and 13 class 1 couplings, 7 of which are actuategroblem for the stability of the nearby soil strata and geo-
This kind of machines are commonly used to perform groutapical structures. The resulting soil displacements rbest
drilling for the placement of reinforcement elements dgrinminimized in order to avoid the possible damage to existing
the construction of tunnels. The direct kinematic solutiostructures, especially in urban areas, where tunnels axcav
is obtained using three methods: the first two are based tions are usually performed at shallow depths. For this rea-
the numerical solution of the closure equation written gsinson the physical properties of the medium to be excavated
the Denavit-Hartenberg convention, while the third is lhseoften requires to perform a reinforcement over the crown of
on the definition and solution in closed form of an equivahe tunnel by means of artificial structures [3] or by high-
lent spherical mechanism. The procedures have been tegpeessure injection of concrete, often called jet groutifig [
and implemented with reference to a real commercial tunn€his method is particularly popular in Europe, where weak
digging machine. The use of the proposed method for tkeil structures are reinforced by means of the installation
closed—form solution of direct kinematics allows to obtain partially overlapping cylinders of concrete. The idea is to
major reduction of the computation time in comparison witenforce and stabilize the ground material through a support
the standard numerical solution of the closure equation. structure ahead and around the excavation. This technique
reinforces the work area by creating a supporting system as a
reinforced arched shell and allows a fast and safe excawatio
1 Introduction Sub-horizontal jet grouting, spiling and pipe roof are othe
Underground tunnels are excavated using mainly tWsbmmon pre-consolidation methodologies [5].
methods. The first one involves the use of large size tun- The jet grouting method improves the strength, stiffness
nel boring machines [1], the other, of more frequent appland permeability characteristics of weak soils (e.g. sandy
cation, is the use of common digging techniques with thgravel formations) through the injection of the grouting-ma
terial, most often a cement-based grout, into boreholes of
predetermined shape, size and depth performed on the face
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of the tunnel. This ground modification technique is based The kinematic complexity of most tunnel digging ma-
on the erosional action of pressurized fluids (i.e. water amtiines may represent a challenge for their mechanical de-
grout) that are injected via a special drill tool which is rosign. Most of them, including the one analyzed in this work,
tated and withdrawn at controlled rates. The purpose is &e designed as a closed-loop mechanism with several de-
perform soil-cement columns by means of mixing and pagrees of freedom, of which only a few of them are actu-
tially replacing the surrounding soils with the cementiso ated. The complexity of computing the direct kinematics
grout. for this kind of mechanism must not be underestimated, as
The spiling method, also called umbrella method [6, 7fpr closed-loop mechanisms usually the inverse kinematics
can be used wherever an extra ground support is requirédan easier problem to be solved [12]. For this reason the
The purpose of this technique is to maintain a correct arclevelopment of these machines is often based on the use
profile and to create a bridge for unstable rock mass Ioy traditional and well established geometries, with refine
means of spiling bolts. In this case the pipes are arrangexnts performed mainly using CAD programs. When an
in horizontal or sub-horizontal direction arranged astiros  efficient and fast procedure for computing the direct kine-
of conic geometry; the divergence, with respect to the gallematics is not available, the designer might have to undergo
axis, is in the range of 5 10 degrees. A visual representalong and tedious trials to test each design in order to coenpar
tion of the orientation of the reinforcement elements isrgho it to the required specifications. The fulfilment of some of
in Fig. 1. The pipe roof method [8] is based on the instathese specifications, such as the extension of the workspace
lation of a set of parallel steel or concrete pipes around tlaead the space occupation during transport, can be checked
contour of the tunnel in order to form a ring. efficiently only when a forward kinematic analysis method
Considering the different working conditions, the typolis made available to the designer. The workspace analysis,
ogy of pre-consolidation and the spatial constraints imsidn particular, is usually obtained by a discretization o th
the galleries, the tunneling machine must be able to reajefint space, followed by the solution to the direct kinemat-
the target position as fast as possible, assure a high vgprkias for each point and the latter verification of the constisai
velocity and allow the optimal consolidation techniquetwit that limit the workspace [13]. A direct kinematic algorithm
respect to the geological conditions. Many types of digllinmight be essential also for conducting some sort of design
optimization, both from the kinematic point of view [14],
and from the structural point of view [15]. The latter, in par
ticular, is gaining wider application in recent years [1Bjoa
in industry, given the availability of specialized commatc
software tools. For these reasons, the development of more

agile tools for the kinematic analysis can hopefully repres
/ an evolution of the common design procedure.

The most general definition of a direct (or forward) kine-
matics problem is to find the position and orientation of any
link of a robot given the geometric structure of the robot and

7, a value of a number of joints position equal to the number of
degrees of freedom of the mechanism [17]. This procedure

is of paramount importance, since the posture of the robot is
usually evaluated from data made available from joint mea-
sures. The solution of this kind of problems is quite sim-
ple for open-chain robots, since the position of any link can
be described by a sequence of independent transformations,
with each being defined by each joint position. This op-
eration is usually performed using the Denavit-Hartenberg

Fig. 1: Placement of reinforcement elements for a crown S®-H) notation [18], using which the end-effector position

tion: umbrella arch method is uniquely defined by the product of homogeneous transfor-
mation matrices of size 4x4.

The simplicity of this approach collapses when a closed-
machines can be found in working sites [9—11]. Most mdeop manipulator is investigated, i.e. a manipulator inehhi
chines of this kind feature a spatial mechanism to suppach joint is connected to two other links using various kine
and move the drilling element, but in many cases the operaatic pairs. Their possibility to constitute a valid altatine
tion of such mechanismis fully demanded to manual contrab open chain manipulators for heavy-duty application$,[19
Therefore the placement of the digging tool and its openatidogether with the complexity of their study, have fostered a
is performed by a skilled operator which sets the position efst literature developed since the 60’s [20-23]. Often, fo
each individual actuated joint of the machine. In this sensihis class of mechanisms it is easier to compute the inverse
the analysis of a machine of this type can be useful not oritynematics, i.e. the problem of finding the values of each
for the development and optimization of existing machinegint position to achieve the desired pose of the robot. In
but also for improving the efficiency of their operation. many cases the direct kinematic problem may also have mul-
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tiple solutions: for example, the Gough platform has 40 posiotors.
sible solutions [17]. Such problem can be tackled by defin-
ing a closure equation, in which the kinematic constrairgs a
expressed as one nonlinear homogeneous equation for eg
closed chain of the manipulator. While the definition of the
closure equation relies on well-established methods, asch
screw theory [24, 25] or, again, D-H notation [26], their nu-
merical solution is often problematic. A numerical solatio
can be achieved using iterative methods such as the Newtc
Raphson or the Newton-Gauss iterative scheme. If the linitiz
guess of the solution is sufficiently accurate, such methog
can be quite fast, but in the case that the initial choice i
not proper, convergence is easily jeopardized. If a saiuto
achieved, it is also not guaranteed that the solution isadlgtu
feasible, since it can be compatible with another assemb
mode. Therefore it might be necessary to repeat the ang
ysis until a desired solution is achieved, or all the possibl
solutions are achieved. Clearly this procedure does nat gua
antee any upper bound on the time needed to reach afeasﬁ& 2: The tunnel digging machine, photo courtesy of
solution for the direct kinematic problem. Casagrande Group

In this paper the general problem addressed above is ap-
plied to a specific problem, i.e. the kinematic analysis of a
large size tunnel digging machine with closed-loop kinemat
ics. In particular, three methods for solving the directekin
matics problem are proposed, and a comparison of the com-
putational needs for each method is analyzed. The first two
methods are based on the solution of a closure equation based
on the Denavit-Hartenberg notation [18]. In the first case, a
single nonlinear equation is written for the whole kinemati
chain and solved numerically. The second option involves —&
the decomposition of the mechanism into three manipula-
tors, two of which are fully actuated and the other is com-  _.--
pletely passive. Again, the solution to the resulting nodir
problem is achieved numerically, using the Newton-Raphson
method. The third method, which is based on the definition
of an equivalent spherical mechanism [27], allows to solve
the direct kinematics in a closed-form, therefore withdnat t P
use of an iterative method. The equivalent spherical mecha="
nism approach is based on the definition of a manipulator de-
signed by translating the directions of the joint axis vexto
and the link vectors so that they all intersect at one point.
Therefore the equivalent manipulator can be scaled to fit a
unit sphere to maintain the correct angular relationship be
tween the joint axis vectors [28]. The advantage brought by
this method consists in the availability of trigonometduak,
made available in [27], that allow to express the kinematics
as a function of only the joint angles and twist angles of the
spatial mechanism. Figure 3 shows the structure of the kinematic chain of

The development of the solutions, and an analysis of titiee tunneling machine. The joints are labeled using therlett
results obtained with the three methods will be presented‘ici’ and an alphanumeric subscript which is a number in the
the next sections. case of an actuated joint, or a letter for a passive joint. The

linear joint 7 is used to control the extension of the mast,
which is the 24 m long element which holds the perforation

2 Structure of the tunneling machine tool. To better organize and understand the kinematics of

The tunneling machine under investigation, which ithe whole machine, the joints from 1 to 3 are grouped as
shown in Fig. 2, is composed of 13 links (including théelonging to the manipulator number 84 = {c1, ¢y, C3},
ground link) and 13 couplings. There are 4 prismatic jointshile joints from 4 to 6 belong to the manipulator number
and 9 revolute joints. 7 of the joints are actuated by hydecaul: 2% = {cs,cs5,C5}. The remaining joints are grouped as

Fig. 3: Kinematic model of the tunneling machine
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the manipulatotM, = {ca, Cp, Cc, Cd, C7,Ce, Ct }. The mast is i Tl o, ag ) S
used to set the orientation and the position of the drilling

tool. Precise placement of such element is crucial to perfor 1 T w2 0 q+mw2  d
a sunabl_e hole for the insertion of rel_nforcem_ent elements 2 T% /2 a 0 0
such as fiberglass poles or to perform jet grouting.
3 T3 -m2 O 0 ds+0s
a T3 w2 -0 0
3 Direct kinematics: numerical solution for the whole a / & a
mechanism b Tp -m2 0 6-1m2 dy
_The direct kme_math problem, i.e. the_evalu_a'uon of_th_e c ch’ /2 0 6c+Ty2 0
position and the orientation of the mechanism given the join
variables, can be computed in several ways. Three meth- d  Tg n ac n dg
ods are explored here, leading to three independent ways to 7 Td 0 /2
achieve a solution. The first two are based on the use of ! & / .
the transformation matrices arising from the kinematid-ana e T. m2 0 B—-1/2 —de
ysis as de_flned by the Dengwt-H_artenberg notation. Thefirst TS w2 0 ;Y 0
method will be briefly explained in this section. -
The most straightforwards solution to the problem of di- T 2  —ap 0 0
rectkinematics, i.e. the one that involves the smallestarho 4 T9 —m2 0 qui-1)2 ds

of preparation, can be achieved with the use of the Denavit-
Hartenberg technique [18]. With reference to Fig. 4, the D— 5 T; -2 a4 Os 0

H pz_;\ra_meters of Table 1 can be defined. The joint variables 6 Tg /2 0 0 ds + 0
are indicated ag;.

Table 1: Denavit-Hartenberg parameters for the whole mech-
anism

in which T3 and T2 are known in a direct kinematics
problem, being the transformation matrix related to the two
fully-actuated manipulatordf; and .. Therefore the con-
tributions due to the passive joints are included in the ma-
tricesTS andTS. Equation (2) includes 6 independent non-
linear equations in the 6 unknown quantiti&s 6y, 8¢, dg,
Be, 6. The solution to this set of nonlinear equation can be
found numerically by use of the Newton-Raphson method
[26,29]. The main drawback of this method is that the nu-
merical solution of the problem must be repeated several
times, iterating the procedure using different initial gses
for the solution, until all the eight possible solutions are
found. After that, the solutions which are not compliantwit

- : the joint limits must be discarded.
d, d,

Fig. 4: Denavit-Hartenberg reference system definitions . . . . .
9 g y 4 Direct kinematics: numerical solution for the decom-

posed mechanism

A more efficient solution can be found by analyzing

The closed-loop kinematics of the mechanism aIIOWStt e manipulator after the decomposition into three sub-
write the closure equation as the product of the transforma- P P

. . i1 manipulators. According to Fig. 3, the two fully actuated
tion matricesT; ~ as: chains?; and 94, can be analyzed after the solution of the
kinematics of the rest of the manipulator, which can be iden-
012 f52-0 tified asMp. The closure equation for this manipulator can
TiTaT3.. . TgTgTeTy =1 (1) be written in the form:

The closure equation can be also written as:
TRTZTETaTE =1 €)

T3 =118 2) which can be evaluated using the D-H parameters re-
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ported in Table 2, which are based on the notation of Fig.
5.

Table 2: Denavit-Hartenberg parameters of the manipulator
My

Fig. 5: Reference systems for the manipulatfy

The evaluation of Eq. (3) requires to compute the un-
known valuesa,, d; andds. The formulas used to compute
them as a function of the joints position of the manipulators
M; and M, are omitted here to comply with the space con-
straints of the paper. Their graphical representation @an b
found in Fig. 6. Equation (3) can be computed in the form:

Fig. 6: S andd; measures for the manipulat®f,

N11N12N13N14 1000
N21 N22 N23 N24 0100

i | T Qi a | 6 S N31N32N33N34| ~ [0010 )

1 _n
21Tz 2 062 b The matrix equation (4) is equivalent to a system of 12
3 T% —g 0| 63 dg+q7 nonlinear equations in the six unknowds 62, 03, 64, 65,

3 o B S. In order to find a solution, just 6 equations need to be
4| Ta 2 0|84 detag—ac taken into consideration, i.e.:
5|Ts 3 0 | 65 ds

f1(01,02,03,%3,04,65) =N;1—1=0
f5(01,02,03,%3,04,65) =Np2—1=0
f3(01,02,63,53,04,65) =N33—1=0 )
f4(01,02,03,53,04,65) =N14 =0
f5(01,02,03,53,04,05) = N4 =0
f(01,02,03,53,04,05) = N34 =0

Such system can be solved numerically using the

Newton-Raphson method. After this, the values just found
for the 6 unknown variables must be used to fiad0, 6,

Be, O anddy. The relationship betweey and8,, as well

as the one betweey and 6 can be understood by using
the planesp, and ps as shown in Fig. 7. The plang, is
perpendicular to the axis while ps is normal to the axig.

plane pf

Fig. 7: Planeg, andps

From the analysis of the reference systems represented

from a normal direction of the plangs, as can be seen in
Fig.

8, the following holds:

Tt
91+§+9a+QZ—9par=0 (6)

from which:
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Fig. 9: Reference systems in the plame

Again, from the projection on the plamge, as in Fig. 9:

from which:

Tt
Ba=—01—0Q2+Bpar— 5

2

Tt
95:9par+§+QS+ef

plane p,

()

(8)

Tt
efZGS_QS—epar—E 9)

The other unknown values can be computed by compar-
ison between the transformation matrices of the whole mech-
anism and of the decomposed mechanism. By compiﬁng
with T&:

Tt
Bp =62+ > (10)

and from the comparison betwe®3 andT?:

Bc = 03 (11)

de=S—a7 (12)

The last relationship involves the comparison between
T3 andTS:

1
Oe=—61—3 (13)

This procedure, as well as the one presented before, is
based on the solution of a set of 6 nonlinear equations with
6 unknown values. Despite that the size of the problem is
the same, the decomposed solution requires a significantly
lower computational effort, given the lower complexity of
the analytic expression of each of the six equations. The
performance improvement obtained with the second method
will be quantified in Sec. 6.1 in terms of average, maximum
and minimum time needed to reach a numerical solution.

4.1 Equivalent spherical manipulator

A more efficient solution to the problem can be found by
the use of the equivalent spherical mechanism of the manip-
ulator M, [27]. It will be shown that the use of this method
allows to achieve a dramatic decrease of the computational
effort needed to reach a feasible solution to the problem,
leading to a closed-form solution that does not require any
iteration.

The notation used in this work describes each link of the
manipulator by defining the two axes at the extremities of the
link through two unitary directional vecto§ andS;. The
relative distance between these two vectors is described by
the link lengtha;; and the twist anglerj. The unity vector
ajj can be defined by the vector prod&tx S; = & sinai;.
Therefore in the case of a rotational joint connecting two
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consecutive links@; measures the relative rotation between
the two, i.e. the angular distance between the unity vectors
aj andaj. For a rotational joint the distanc® will be a
constant.

If a prismatic joint is taken into consideration, the trans-
lation of a link jk is performed along an axis parallel to the
link ij, leading to a constant angular displacement between
and jk measured aB;. The linear displaceme; is, in this
case, the joint variable. Additionally, a local referencaie
can be located on each joint of the manipulator according to
this notation: the coordinate system attached to theilink
will have its origin at the intersecting point of vecteg and
S. TheX axis of the reference frame will be paralleldg,
while theZ axis will be parallel tdS.

Such notation, that can be applied to define the kinemat- ) ) ) )
ics of any manipulator, will be used in the rest of the workF1g. 10: Equivalent spherical mechanism for the manipulato
As reported by Craig and Duffy in [27], any closed—loop7"ll3
manipulator can be transformed into an equivalent spheri-
cal mechanism, for which the kinematics can be solved in
a closed form. Such procedure can also be applied to a
serial manipulator if a suitable hypothetical closure liak
added [27]. Here the procedure will be recalled and applieg, + ay3c, + S5Xo + ag\Waa + X2 + g Wazo+
to the solution of the direct kinematics of the manipulator +SX,3,+ asic; =0
M,. The solution of the resultant equivalent mechanism can
be obtained in closed-form, achieving therefore a major re=S,s;, + ass,C12+ Se¥o — a3aUsy 1 + u¥a2 — a4sU a0+
duction of the time needed to reach a solution to the direct + SY,30— ass; =0
kinematics problem.

The procedure to be followed to achieve the equivaSl + 12+ aaUz1 + SZp + sdUs21 + Sulaz + AusUazart

lent spherical manipulator requires to apply a transforma- +52432=0;
tion which brings all the unit vector§ of the axes of the
couplings to a common intersection point O, which will b ) L ; :
the lS;engt]er of an unitary radius spherg. Now the links of t:f rmulas of the cosine direction found in the appendix of

- . - ference [27], which are also reported in the appendixisf th
equivalent manlpulator_can be drawn as arcs of such cwcub\%rk for t[he]reader’s referencep The short—hpapnd notations
ference. The a_ngular d|splaceme_nt betwe_enthe vE&ctord S — éin(x) andoy = cosx) is usea throughout the paper o
tkhe vect_orSj -WI" Ee cxij.hBy_addmg l? swtablle m(;méaerhof ake the formuxlas easier to read. In particular, Set 1 has

inematic pairs, the mechanism can be completed. Suc - ) : : P

cedure, Wr?en applied to the manipulatd, allc?ws to define P een use_;d to obtain Eq._ (15). The foIIowmg notano_n is used
the spherical five-bar linkage of Fig. 10: this choice ensur s well, in orderfto ay0|d Ieggt_hy ?xpre_sspn that involve a
that the original and the equivalent mechanism have both t g sequence of cosine and sine functions:
degrees of freedom.

(15)
The above formulation is found by extensive use of the

Given the degree of mobility of the equivalent manipu- é = SjS;j (16)
lator, in order to find a solution for the direct kinematics, a Yj = —(SijCjk + CijSikCj) (17)
system of two independent equations with two unknown val- Zj = GijCik — SjSikC; (18)
ues must be solved. Such equations can be originated from a e

: g . Xj =SijSj (19)

closure equation. For the spherical five-bar linkage the clo
sure equation can be written as: Yj = —(SjkCij +CjkSij ¢j) (20)
Zj = CikCij — SikSi (21)

S1S1 + arpn2 + S + Az + S + 34834 + 1S4+ with the subscripj =i+ 1 andk = j + 1. Equation (15) is

+assa45+ S5Ss + as1851 = 0 written also by using the following short-hand notation:
(14)
Equation (14) can be referred to any reference frame and Uji = 5iSj (22)
projected on any arbitrary plane, yielding a scalar equatio e L e
If Eq. (14) is referred to the first reference frame, the proje Vi = —(s¢ +GsiGi) (23)
tion alongX, Y andZ directions are, respectively: Wii = ¢icj —S8;Gij (24)

P. Boscariol, A. Gasparetto, L. Scalera, R. Vidoni, Efficient closed-form solution of the kinematics of a tunnel digging
machine, Journal of Mechanism and Robotics, 9(3), pp. 1-13, 2017. Paper No: JMR-16-1040; doi: 10.1115/1.4035797
page 716



Other notations are defined in the appendix A or in [27].
It should be highlighted that the scalar product between two
2

vectors is independent from the coordinate system that the Lo Ma L IMs N L N
two vectors are measured in, so each element of Eq. (15) ‘ Ll Ml Ml Nl — ‘ Ll Nl =0 (33)
can be evaluated choosing the most suitable set of equation 22 27 22
available in appendix A. The equation (15) takes a general
form, that can be written as: The last equation can be expanded, leading to a eight
order polynomial in the variabbe. In order to evaluate the
5 (ACL+Bisy + Dj) + S5 (Eicy + Fisy + Gi) + value ofxs as a function of the value o, it is sufficient to
+ (Hi01+ ||SEI_+\]|) =0 i= 1’2 (25) solve either:
if, for example, the unknown variables are the an@les
and6s. By using the trigonometric identities: _ ‘ ml Hl
2 N2
X5 = —— 34
5 ‘ L]_ Nl ( )
2%k 1-—x2 Lo No
S = (26)
14+x¢ 1+x¢
in which x = tan(6x/2), and by multiplication of or:
EQ.(25) by(1+ x2)(1+ x2) the following is obtained:
X2[x2(Aj —Dj —Hi +J) + X1 (2l — 2B;) + (—A — Dj + Hj + J)] (LN
+X5[X3(—2E; + 2Gj) + X1 (4F) + (2E; + 2G))] Lo No
(A +Dj —Hi+3) + X1 (21 + 2B7) + (A + Di + H + )] = 0; =T MLl (35)
fori=12 ‘
(27) L2 M2
which can also be written, using the Bezout's method
[30], as: The eight solutions of the direct kinematics can be ob-
tained using the identities defined for a mechanism belangin
to the group 2, according to the notation used in [27].
X2[aix2 + bixy + di] + Xs[&XZ + fixy + gi]+ 28)
+[nix¢ +iixa+ ji] =0; fori=1,2
5 Closed-form direct kinematics for the manipulator
in which the various terms are the following: Mp . .
The passive manipulataff, can be represented, as
e it o om A kL specified in the previous section, as a five-bar spheridal lin
:;?(GEE)H'H' tf): ;i,lél 28 g: ;2(2+2i;rH'+J' (29) 2ge. A planar representation of this five-bar linkage is pro-
hi=—A+Di—Hi+3 i =2(Ii +B)) jy =A +Dj+Hi+J vided in Fig. 11, which shows the presence of 4 revolute
Equation (28) can be rewritten as: and one prismatic joint, arranged to form a spherical RRPRR
' mechanism.
x5 (L1xs+M1) + Ny =0; (30)
x5 (Laxs +M2) + N2 = 0; (31)

in which the coefficients can be evaluated as:

Li = ax] + bix + d
M:a@+ﬁﬁ+g (32)
N, = hiXE-I—IiX;L-l- Ji

The equations (30) and (31) must be linearly dependé:nig- 11: Planar representation of the spherical five-béde lin
in order to find a common solution, which happens for: ~ 29€
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After the straightforward solution of the kinematics of
the serial manipulatordf; and, the following parameters
are known:ay, a3, ags, ass, as1, 12, 023, 034, A4s, Os1,

S, S, S, S. The unknown values ardly, 65, 03, 04, 65, Z23= 2_5 (38)
Ss. The parameters for the representation of the equivalent Z3=115 (39)
spherical manipulator according to the Denavit-Hartegber Z123= Cs5 (40)
notation are reported in Table 3. Urp3a= SsS4s (41)

i Sincecys = 0, beingays = 11/2, Eq. (37) can be written
Ti i aji | 6 S as:
TP | 2+ 01+04 | Ara | 61 da
Tzl —T[/2 0 92 db

Z Z a =0 42

T2 2 0 | 6 do+ o S1Z5+ SZ15+ S+ 851545 (42)

3
T —Ty2 0 | 8| detag—ac Now, using the correct expression for the ter§sand
T54 /2 0 | 65 ds making the dependence on anglesandBs explicit:

Table 3: Denavit-Hartenberg parameters for the equivalent

five-bar spherical mechanism
P — 55151 + S(C1C5Cs1 — 155) + Su+ A5 =0 (43)

A second scalar equation is determined by the projection
along the Z axis of the closure Eq. (14), using the set number
5.1 Projections of the closure equation 10 from the appendix A:
The complete procedure developed to solve the direct
kinematics of theM,, manipulator is reported here by making
several references to the work [27]. The procedure is shown Sic12+ a12(0) + S(1) + a23(0) + S3Z4s51+ azaUas12+
in detail, since the solution of an RRPRR mechanism is not +S4Z51 + ausUs 1o+ S5Zy + as1Uso = 0
reported in the mentioned book. The closure equation (14) (44)

can be projected on an arbitrary reference system, and for By using the values;_; from Table 3 and using the re-

each choice of such reference system, 3 projections, a'QBQonshipz451: Co3 = 0, EQ.(44) can be rewritten as:
X,Y ad Z direction, can be computed. Given the fact that
the choice of the reference system on which the projection
can be made is arbitrary, as stated in the previous sedtien, t
choice will be made in order to obtain the simplest possible S+ S7Zs1+SZ1+asU12=0 (45)
formulation. The calculation of the scalar equation résglt
from the projection is a tedious and complicated task: for Using the correct expressions for the terZas andas;
this reason the formulas reported here are evaluated usm hlights the dependency on the variaBleand6s;
the tables of the direction cosines for a group 2 mechanis '
reported in the appendix A. Using th& 8et of equation, the
projection of Eq. (14) alond axis is:

S+ Su(C105C51 — 515) + SCSs1 - a5 =0 (46)

S1Z23+ a1U234+ $Z3 + @23Uss+ SCaa+ S+ SZ123+ 5.2 Solution of the direct kinematics
+as1U1234=0 The equations (43) and (46) can be used to define a set
(36) of nonlinear equations that can be solved in closed-form af-
and by substituting the values andcss from Table 3, ter some algebraic manipulations that will be described in
the following is obtained: the following. The procedure allows to write the system of
equations (47) in the form of eq. (27):

S1Z23+ SZ3+ S+ SZi23+ as1U1234=0  (37) { C5((S2C51)C1 —$5151) +S5(—Ss1+as1) + S =0
Cs5((SuCs1)C1) +S5((—Su)s1) + (SsS51)C1+ (—851)81 + S :(0 )
47
For a spherical five-bar linkages the following holds From a direct comparison between eq. (47) and equa-
[27]: tions (27,29), the parameters defined in eq. (29) are:
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N =%19+C19+S =S+C1%—-551S

b1=0 b2=—2a51

h=%15 -1 +S% h=S-1S+51S

e = 2a5; e=0

fi =4S fo = —4S (48)
01 = 2a5 g2=0

h1=-%1S -1 +S =S - 51&% — 1S

i1=0 i2=—2a51

1=-%1S+C19+S 2=+ 51+ 51S

Using eq. (32), the equation (47) can be written as:

{

in which the termd.1,M1,N1,L>, M2 e Ny are:

X5(L1Xs +M1) +Np =0

X5(LoXs +Mz) +No =0 (49)

Ly = agx2 4+ byxg + di Lo = aox? + boxg + d
M1 = exx§ + faxa + g1 Mp = ex4 + foxy + g2
Ni = h1x§+ Iixg+j1 Np = th%-l— 22X1+ j2

(50)

Now, eq. (33) can be rewritten as afff 8rder polyno-
mial equation of the unknows :

ag+arx1 +86X2 +asXs + auXs + X +axs +aix] +apd =0
(51)
in which the coefficients fromg to ag can be evaluated
as:

ag = 4(—(Cs1(—02 + (—ac +aq + de)?) + Op(—0da + Cs10t )S51 + dadl $2)%—
—a,(0F — G5 (—ac+ a4 + de)® — 20y 51+ A7)
(52)

a1 = 16ara((1+ CZ;)dy(d2 — (—ac+ 8y + de)?) + (2c51dadZ — c2,dZd +
+(—202 + (—ac +aq + de)?)df )Ss51+ Ao (A2 — 20510ady +d?)E; —
—d3d s}, +af,(dy — drss1))

(53)

a = —16(aty + (2 — (—ac +ag +de)?)2 + dp (02 — (—ac +ag +de)?)

(Cs10a — 2df + 2, dr)ss1+ (d3(02 — (—ac + g+ de)?) —

—(—14c2,)d2d?)S2, — daGlydr (da+ Cs10lf )S, +

+82,((5+ CZ;)d? — 2(—ac +ag + de)? + b (20510 — 501 )51 + 0255, ))
(54)

% =
+(—602 + (—ac + ag + de))df ) S51 + dp(—302 — 20510ads +
+d2)82, + d2ds 3| + @, (—7dh + drSs1))

(55)

ay = —8(4al, — (—4+cky)(df — (—ac+ag +de)?)? — (dZ(—3d3+
+4(—ac+ a4 + de)?) + 2510a(—2d2 + (—8c + ag + de) ?)d +
+(4—3c8))dZdf) 5, — dZd7sd, +af, (27— 4cg)di+
+(—8+CE))(—ac+ad+de)? + (43 — d?)h,))
(56)

—16aa((—7+ cZ;)dp(dZ — (—ac +aqg -+ de)?) — (251002 + 3c2,d2d; +

a5 = 16asa((7— CZ;)dp(dZ — (—ac +aq + e)?) — (2c510a02 + 3¢Z, d2d +
+(—602 + (—ac +ag + de)?)dr ) Ss1 + Op(3d2 + 2651 dads — 07 )2, +
+d§df %1 + a?a(de +dfss1))

(57)

ag = —16(af, + (42 — (—ac+aq + de)?)? — dp(df — (—ac +aq + de)?)
(Cs1a — 2dy + 2y df)ss1+ (d3(d2 — (—ac + g + de)?) —
—(—1+cZ)d2d?)s2; + dadpds (da + Cs10¢ )3, + a2, ((5+ c2y)d—
—2(—ac+ag + de)? + do(—2C510a + 50 ) s51 + 02, )) )
5

a7 = 16ara((1+C3)dp(02 — (—ac +ad + de)?) + (—2C510a02+
+2,l2dly + (202 — (—ag + 8+ de)?)d )1+ o (02—
—2C510ads + d?)%le dgdf §l+ a%a(db +d¢ 351))

(59)

ag = —4((cs1(—02 + (—ac+ad +de)?) + O (da — Cs51dr )51 + dadlr S3))%+
+a2,(d2 — ¢&;(—ac +ag + de)? + 2dpds S51 + 0252, ) 0
It has been observed that, when using the kinematic pa-
rameters of the machine under investigation, Eq.(51) has fo
complex and four real solutions. Once these solutions are
found,xs can be evaluated through eq. (34), whose explicit
form is:

X5 = (—2X1ataX1lp — 2x1@7aX1Cs1%1 (—ac +ad + de) — 2X1@raX1d X1 S51+
+Axiafaxax1 + xadpxixg — 4% (—ac +ag + de) Xaxa + 4x10axs
(—ac+ ag + de)X1S51X1 X1 + 4X1 OpX1 df X1 S51X1 X1 — 12X AfaX OpX X4+
+4x182 X158 + Axq 02x1 X6 — 4xq (—ac + ag + o) XX +
+4x10aX (—ac + ag -+ de) X1S51%1 G — 4X1 dpXa O X1 S51X1 G —
—2x8taX1oX1 X} + 2X18aX1Cs1X1 (—ac + 8d + de) X1 Xf+
+2xqarax1 i X1S51%0%7) / (—2X1Cs1 X0 02 + 2X1 Cs1%1 (—ac + g + ) ?
+2x1 OaXq OpX1 S51 — 2X1 C51 X1 OpXe Ot X1 S51 + 2X1 HaXe A X1 21
+4x185aX1C51X1 X1 X1 — 4X1 AfaXa OaX1 S51X1 X1 + 4X1 OaX1 OpXa Ss1Xa X8+
+4x1C51X1 dpX1 df X1 S51X1 X2 — 4X18f aX1 Cs1X1 Bp X1 X3 —

—4x85aX1 0aX1S51X00 + 2X1C51X1 AZX1 3G —
—2x1C51X1 (—8c + @g + Ue) X1 X7 + 2x10aX1 o X1 S51X1 X7 —
—2xC51%a pXa O X1 Ss1Xa %] — 2Xa daXa O X1 52, %1%4);
(61)
Now, the angular displacemerfisand6s can be evalu-
ated using:

6 = 2atan(x); i=1,5 (62)

From the formulas of the direction cosinég, = Z3, the
cosine ofd; can be evaluated as:

C3 =S1S5 — C105C15 (63)
Fromcs, s3 can be evaluated as:
ss=1/1-¢5 (64)

Each of the four values af; allows to find two values

for s3, defining thus all the eight solutions of the direct kine-

matic problem. Now, using the projection along the X axis
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of the closure equation (14) using the set 6 from appendix Are lying on the same plane. In this situatieg, = 0 and

the following is obtained: therefore eq. (67) is singular. A different relationshiprfr
eg. (67) can be established using the projection on the Z axis
of the closure equation, using Set 1, i.e.:

Ss1251 + S$Xo1+ X5 +as1 =0 (65)
which, by usings;» = —1, beingai» = —11/2, can be SC12+ S22+ S4Zs2+a51=0 (73)
written as:
whose explicit form is:
—$s1+ SC19 + S5 +as1 =0 (66)

—C23+ 9583 =0 (74)
Now, being from the fundamental formulgs, = Ss51C5
and since the equivalengeg, = Z5 can be written as-s$53 = )
CsSs1, the expressios, = —CsCs1/Ss can be used in the last  BUt S8 = 0 from the secondary relationshis; =
equation leading to: —X3,, allowing to write eq.(74) as:

. Ss -Ss—-as —S =0 (75)
_ 2Pl T % dbl 67 2
S T (67)

from which c, = 0. Such value can be substituted in
the fundamental relationshis;» = s3483 together with the
kinematic parameters of the manipulator, leading to:

From the fundamental relationsh¥a, = Xs1, c2 can be
evaluated as:

C5C5181 + C1S5
Gp=——"— 68
2 s (68) =0 (76)

FromZs; = Z5, s, can be evaluated as: Again, cs = 0 can be found fronZz1 = Zs. Now the

projection of the closure equation on the X axis, evaluated
using the Set 1 is:

= (69)

S$3Xo + S4Xa2+asic1 =0 (77)
FromYi23 = $45C4, C4 iS:
which implies that—,S3 — ¢3S + as3¢1 = 0. Since
alsoc,; = 0, the last equation is equivalent to:

C4 = —C2C51 — 192551 (70)
Again, fromXj23 = 4584, &4 can be evaluated as: S = as101 (78)
Now, sinces; is equal tot1, beingc; = 0, S3 can be

S4 = —C13S51+ C3(—C5152 + C251551) (71)  evaluated as:

At last, the angular displacemertis, 63 and6, can be
simply evaluated using: S5 = tascy (79)

S ) At last, the projection of the closure equation using set
6 = atan(—) ; 1=23,4 (72) 7 along the X axis is:

Ci

The formulation above is not valid in the case in which
g1 = a4, which happens when the manipulat@ié and > S1 X234 X34+ X4+ @5165 =0 (80)

P. Boscariol, A. Gasparetto, L. Scalera, R. Vidoni, Efficient closed-form solution of the kinematics of a tunnel digging
machine, Journal of Mechanism and Robotics, 9(3), pp. 1-13, 2017. Paper No: JMR-16-1040; doi: 10.1115/1.4035797
page 1¥16



Using the relationshipXz34 = s5155 = 0, which is valid tests have been performed on a low-power PC with just 512
beingss; = 0, rewritten as-1S3+as;¢s = 0, &4 can be eval- MB of RAM, in order to use a calculator with computational

uated as: resources similar to those of an industrial portable PC.
a Newton-Rapshon (1) [s] [ Newton-Raphson (2) [s]| Spherical equivalent [s]
= 51C5 (81) 1000 solutions 5635 688.852 8.76
S?; mean time 5.635 0.689 0.0088
maximum time 24.266 2.063 0.0940
minimum time 2.8910 0.3280 0.0001

The formulas presented in this section allow to deter-
mine all the unknown value with i =1...5 andS, and o ) )
therefore by using these the closed-form solution of the diable 5: Overall, average, minimum and maximum time
rect kinematic problem can be achieved. needed to solve the direct kinematics for 1000 random con-

figurations

6 Results
An examp|e Of the So|uti0ns that can be found using the The I’esultS Of th|S Simp|e testare ShOWI‘] in Ta.ble 5. If the
three methods described above for the direct kinematic-prdf€an time is taken as the performance index, the algorithm

lem is reported here. The input parameters are the joint ge@sed on the equivalent spherical mechanism is roughly 78
sitions: times faster than the Newton-Raphson method applied to the

separate solution of the three kinematic chains, and 648stim
faster in comparison with the solution for the whole manip-
ulator. Moreover, the spherical equivalent method allawvs t
qi = 0.5061rad @ =0349lrad gz=1m achieve a solution in time that is always less than 0.1 s,avhil
s = —0.3491rad 05 =1.0472m 6=15m the two other solution methods can require up to 24 s and 2
g7=1m s.
The reduced time needed to compute the direct kinemat-
) ) ) _ _ ics can be exploited to perform tasks such as the analysis of
The eight solutions of the direct kinematic problemy,e \yorkspace, which can be useful for the structural opti-
tested by comparing the results obtained with the three-mefjjization of the machine. The workspace analysis is usually
ods explained above, are reported in Table 4 and represeriggtormed by repeating the direct kinematics analysis for a
graphically in Fig. 12, 13, 14 and 15. The comparison bgyige range of configurations of the joints positions, in orde
tween the outcome of the three methods presented in thiscover a wide range of reachable poses of the robot. Such
work verifies the consistency of their results. procedure can require easily hundreds of thousands of suc-
cessive kinematic analysis: in this case the use of a faster
algorithm can solve the task in a few minutes instead of sev-
eral hours.

solution | Balded | O(ded | Ocideg | Oe[ded | ©f[ded | dgm]

a 237.58 3.29 8.79 35868 | 22277 | -1354
23758 | 18320 | 35121 | 17868 | 22277 | 1154
234.84 371 18869 | 181.33 4554 | -1353

b

c

d 234.84 183.71 171.31 1.33 45.54 11.53 7 COI"IC|USIOI’IS

e 57.62 176.29 8.79 181.74 42.80 -13.54 R . . .

f s762 | 35620 | sste1 | 174 | 4280 | 1154 In this work the problem of solving the direct kine-
9 6036 | 17671 | 18888 | 35825 [ 22003 | -1353 matic problem for a tunnel digging machine has been in-
h

60.36 356.71 171.12 178.25 220.03 11.53

vestigated. The machine under investigation is a parallel
Table 4: Solutions to the direct kinematic problem kinematics robot with 13_Iinks and 13 joint;, of wh.ich.just
7 are actuated. The solution to the forward kinematics is per
formed using two traditional techniques, i.e. the numérica
solution, obtained with the Newton-Raphson method, of a
closure equation defined using the Denavit-Hartenberg nota
6.1 Evaluation of the computational effort tion. Such algorithms are tested both for the whole kinetnati
The computational requirements of the developed algohain and for a structural decomposition between actuated
rithms have been tested extensively to evaluate the actsab-mechanisms and a passive mechanism. A third method,
time needed to find the solutions to the direct kinematidsmsed on the use of an equivalent spherical mechanism is de-
problem. For this purpose, 1000 random values for the joinéloped as well. Such approach, allowing to write the solu-
positions of manipulatof; and M, have been generated tion to the direct kinematic problem in a closed form, bears a
and three different algorithms have been applied to themelevant reduction of the time needed to perform the forward
the Newton-Raphson method applied to the closure equatkinematic solution. The consistency between the solutions
for the whole kinematic chain, as in eq. (1), the Newtorbrought by the three methods is verified, and the computa-
Raphson applied to each manipulator separately, as in &gnal requirements for the three methods are compared as
(2), and the equivalent spherical mechanism approach. Tell.
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Fig. 12: Solutions (a) and (b) to the direct kinematic prable

Fig. 13: Solutions (c) and (d) to the direct kinematic proile
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Equations for a spherical pentagon

Fundamental formulas:

U123s= 555 V1234=C4555 Wi234=Cs

Uzzss= S5181 Vozsas= Cs151 Whass= C1

Uzgs1=S128 Vass1=C12% Ways51=C2

. ) i Uss1o= 383 Vas12= C2383 Wss12=C3
Appendix A: Equations for a Spherical Pentagon U:iz: 344 V:iz: Causa V\/:izz Ca

. Us321=S51S5 Vaz21=C5185 Wiz21=0Cs
Fundamental Formulas: Uspis— Sussu Vanis— Cassa Waois— Ca
Uo154= S34S3 V2154= C34S3 Wh154=C3
Uisaz= $3% Visa3= C23% Wissz=C2
Usazo = S1281 Vs432= C1251 Wh432=C1
X123 = 4554 Y123 = $45C4 Z123=Cs5
Xo30= %1% Y234= %5105 Z234= Cs1 Direction Cosines - Polar Pentagon:
X345 =S1281 Yas5=S12C1 Z345= C12
X451 = 3% Ya51= $3C2 Z451= C23
X512 = 53453 Y512 = $34C3 Z512=C34
Setl S (0,0,1) a2 (1,0,0)
X321 = 5% Y321 = S45Cs Z321= Cs45 S (0,—S12C12) @23 (C2,%2C12,U21)
X432 =55151 Ya32=S51C1 Z432=Cs1 S (X2,Y2,22) agq (Wa2, —U351,Us21)
X543 = 8128 Y543 =S12C2 Zs543=C12 S4 (X32,Y32,Z32) (W432, U4321, Uaz21)
X154 =383 Y154 = $3C3 Z154= C23 S5 (X432, Ya32,Z432) 351 (C1,—
X215 = 53454 Y215 = S34C4 Zp15=C34
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az3
Xa3,Y43,243) a51
arz (c2,—%,0)

(1,0,0)

aga (C3,53C23,U32)

aus (Waz, —Uj 35, Usso)
(Wk43, —UZ 35 Us432)

SeB S (0,0,1) aga (1,0,0)
S4 (0,—S34C34)  @us (Ca,4C34,Uas3)
S (X47Y4,Z4) r5‘51 (\N547 U5437 U543)
S1 (Xs4,Y54,Z54) @12 (Wisa, —Uj545 U1543)
S (X154, Y154, Z154) @23 (C3,—3,0)

Se# S (0,0,1) 1,0,0)

aus (
351 (Cs, S5C45,Usa)
arz (Wis, — U1547U154)
az3 (Wo1s, U354 U2154)

X215, Y215, Z215) @34 (C4,—%4,0)

Seb

as1 (1 0 O)
a12 (C1,51Cs51,U1s)
azs (VVZL U2151 U215)

(VV321, U32157 U3215)

X321, Y321,7321) 345 (Cs,—$5,0)

S (0,

S5 (0,551,C51,)

Sy (Xs,—Ys,Z5)

Sz (Xa5, —Yas, Z45)
Sz (Xaas, — Y345, Z34s5)

Se S5 (0,0,1)

0,s45,C45,)
Ny, Za)

X347 —Y34,2Z34)

X234, — Y234, Z234)

Ss (
Sa (
Sg (X4
S (
S (

SeB Ss (0,0,1)

Sz (0,534,C34)

S (X3, —Y3,723)

S1 (X23, —Y23,223)
S5 (X123, —VY123,Z123)

as1 (1 07 0)

a5 (Cs, —S5Cs1,Us1)
aga (Was, U459, Uss1)
a23 (Waas5,U3451,U3451)
a12 (€1,81,0)

ass (1,0,0)

aga (C4, —S4Ca5,Uss)
a23 (Wa4,U345,Uzas)
a12 (Wo34,Uj3,5,U2345)
as1 (Cs,55,0)

204 (1,0,0)
a23 (C3, —s3C34,U34)
a2 (Woz,Uj3,,Us34)
as1 (Wi23,U 534 U1234)
ass (C4,%4,0)

SetlO

Sz (0,0,1) a3 (1,0,0)

S (0,53,C23) ars (C2, —$C23,U23)
St (X2, —Y2,22) a51 (Wi2,Uq53,U123)
S EX127 —Y12,Z12) EVV512, Ud;,3Us123)
Sy

X512, — Y512, Z512) @34 (C3,S3,0)

SQ ( a2 (1 O, O)

St (0,s12.C12) as1 (€1, —S1C12,U12)
Ss (X1,—Y1,21) ags (We1,Ug; 5, Us12)
Ss ( ag4 (Was1, U510 Uss12)
S azs

(C2,%,0)

X51,—Y51,Z51)
Xas1, —Ya51, Z451)
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