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Abstract

This paper proposes the theory and the experimental assessment of a robust model-based tra-
jectory planning algorithm for underactuated nonlinear systems in point-to-point motion. The
method has been developed to increase the insensitivity of the resulting trajectory to parametric
uncertainties of the plant. The proposed method is based on an augmented model that considers
an approximate dynamics of the servo-controlled axis driving the actuated degrees of freedom.
Trajectory planning is accomplished by computing the motion reference for the actuated degrees
of freedom to reduce the effects of the uncertainty on the dynamic model. By exploiting an
indirect variational formulation method, the necessary optimality conditions deriving from the
Pontryagin’s minimum principle are imposed, thus leading to a differential Two-Point Boundary
Value Problem (TPBVP). Numerical solution of the latter is accomplished by means of collocation
techniques to handle model nonlinearities.

Robustness is achieved by including additional conditions on the sensitivity functions for the
initial and final points of the trajectory. The experimental evaluation of the effectiveness of the
proposed method is performed on a double-pendulum crane, by comparing the transient and
residual vibration. A comparison is provided with three well-established input-shaping methods,
and robustness against unmodeled parametric perturbations and tracking errors is evaluated. The
experimental evidence indicates that the inclusion of the additional constrains results in an effective
reduction of the residual vibration, and that the proposed method is well suited to perform high
speed motion.
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1. Introduction

High-speed operation of robotic manipulators and automatic machines requires the concurrent
use of effective control systems and smooth trajectories to ensure accurate tracking of the desired
reference with minimum vibration excitation. The problem of motion-induced vibration is exac-
erbated in underactuated systems, such as cranes or machines with a lightweight construction of
either the links or the joints [1, 2]. Such manipulators might incur in severe vibration both during
the motion and after motion completion, thus limiting their operativeness and their precision [3].

The literature proposes several approaches to improve the dynamic behavior of underactuated
systems. Focusing on trajectory planning can reduce the need for accurate, high-bandwidth sensors
devoted to vibration control. This feature is useful in those industrial applications where the use
of additional sensor can be impractical or non cost-effective, as well as those where the system is
controlled by standard, closed and proprietary industrial controllers. This fact has been attracting
a lot of attention in the scientific community and among industrial practitioners.
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The literature on trajectory planning algorithms is therefore quite extensive, as shown by the
review paper [4]. A first distinction can be made between model-free and model-based approaches.
The first approach is a general strategy that has the advantage of allows the same technique to
be applied to several different machines without any knowledge of their dynamic model.

Model-free trajectory planning algorithms are often based on geometric approaches, and there-
fore they focus on the definition of time laws defined either in the joint space or in the operational
space [5] using interpolation techniques. Vibration reduction is achieved by reducing or eliminat-
ing jerk peaks, which are responsible for the excitation of the mechanical structure of the machine
[6]. Acceleration continuity and jerk limitation is obtained by choosing suitable motion primitives,
such as B-splines [7, 8] or cubic splines [9]. Their effectiveness is however limited to the possibility
of reducing vibration excitation, since in general they cannot guarantee zero residual vibration.

In contrast, model-based approaches requires an adequate knowledge of the dynamics of the
model for which the trajectory is planned. Therefore, they can generally lead to more accurate
results and zero residual vibrations, at the cost of a lesser robustness to model-plant mismatches,
unless uncertainty is properly tackled in the design. A model can be used in the design by
following several approaches. For example, zero residual vibration can be achieved by precise
timing of motion laws such as s-curve speed profiles [10] or smoothed jerk profiles [11], by taking
advantage of the knowledge of frequencies and damping factors of the main vibrational modes.

The same concept is exploited also for the class of methods referred to as input shaping, which
have gained a wide diffusion [12, 13] due to their effectiveness and simple implementation and
are often used as benchmarks in the literature. Input shaping filters can be used to perform
rest-to-rest motion with zero residual vibration for single mode [14] and multi-mode systems [15].

Input shaping techniques have also been extended to react to uncertainty or changes of the
oscillation frequencies, leading to the definition of robust shapers and to the extra-insensitive
robust shapers [16].

Similar performances levels can be achieved by translating the motion profile design into a
filter design problem, that are used to produce smooth motion profiles when convolved with rough
reference signals (see e.g. [17, 18]).

An alternative approach to model-based trajectory planning is based on translating it as the
solution of an optimal control problem. Among the extensive literature on such a topic, a main
distinction can be made into direct and indirect optimization methods.

In the case of direct methods, the original optimal control problem is converted into a parameter
optimization problem [19], by a proper discretization of robot kinematic variables. Then this
new finite-dimensional problem can be solved through a wide number of efficient optimization
algorithm, either deterministic or stochastic ones. For example, an optimization problem is solved
in [20] to compute the coefficients which define the correct zero residual vibration as a combination
of polynomial and cycloidal functions. In such a work, as wells as in others using direct methods
such as [21], the solution of the optimization problem imposes extensive dynamic simulations and
therefore they require a non-negligible computational effort. Hence, their effectiveness is reduced
in the presence of systems with large number of degrees of freedom [22].

Indirect methods make use of calculus of variations: the necessary conditions of the Pon-
tryagin’s Minimum Principle (PMP) are imposed and the resulting Two-Point Boundary Value
Problem (TP-BVP) is solved. Indirect methods are widely reckoned to be very accurate, partic-
ularly in the case of high degree of underactuation or multi-objective optimization [23]. Their
application is very widespread in literature, and they have used for mobile robot application [24],
flexible-joints robots [25], flexible-link robots [26] and cable-based robots [27], just to cite a few
examples.

The general framework of calculus of variations can be adapted to include countless options
in the optimization problem, and to account for constraints as well, which are always useful when
addressing practical implementations.

One of the main drawbacks of this approach, that is inherited from its roots in optimal control,
is the limited robustness to parametric mismatches between the plant used for the planning and
the actual plant. Robustness to such changes is, instead, a highly useful characteristic that should
be achieved by any control scheme or trajectory planning algorithm [28]. Therefore, the robustness
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issued has been tackled extensively in the field of closed-loop control, as testified by a literature
too vast to be referenced in this work, but to the best of authors knowledge, there are very few
works that specifically focus on robust trajectory planning algorithms.

One example is [29], in which robustness is achieved by introducing in the cost function a
term of Gaussian cumulative noise. The work by Shin [30] focuses on the definition of robot
trajectories by taking into account the uncertainties brought by payload variations trough the
change of bounds on joint torques. Other interesting approaches to robust trajectory planning are
currently available as solutions to the problem of robust optimization for dynamic systems: an
extensive overview of this problem is available in [31]. One of the Authors of the present paper
has recently proposed an extension of the variational approach to trajectory planning problems
that can cope with parametric uncertainties [32], that unlike other methods in literature (such as
those in [33, 34]), can cope with plants described by nonlinear dynamics.

Model-based techniques casting optimal motion planning as an optimal control problem can be
also grouped in accordance with the variables obtained as the output. For example, papers [35, 36,
37] compute the optimal profile of the command force (or torque) driving the actuated degrees of
freedom, by casting, in practice, optimal motion planning as an inverse dynamics problem. A less
common approach is, instead, performing optimal trajectory planning by synthesizing the optimal
position (or speed) reference of the actuated degrees of freedom, such as the one in [38, 39, 40].
Although such an approach has attracted less attention, it has some practical advantages that make
it suitable for the implementation in industrial robots or manipulators, as well as in complicate
multibody systems. Indeed, it does not require estimating the control force needed to perform the
motion, which are instead computed by the real-time feedback and feedforward control of the axis
driving the underactuated system.

Experimental validation of the method is also provided through a double pendulum crane
system, which is a three degree of freedom system described by a set of nonlinear differential
equations. The experimental testbed is developed through an industrial robot with proprietary
and closed controller, thus corroborating the ease of implementation in real systems. A comparison
with three widely used input shaping techniques is provided as well.

2. System model formulation

The equations of motion of a multibody system with n degrees of freedom (dofs) can be
written, given a proper choice of of n independent coordinates q, as the set of n nonlinear ordinary
differential equations:

M(q) = K(q) +G(q, q̇) +B(q)F (1)

M ∈ ℜm×n is the mass matrix, K ∈ ℜn is the vector of position-dependent forces, i.e. elastic
and gravity forces. Vector G ∈ ℜn takes into account the gyroscopic and the centrifugal forces,
as well as the damping forces. B ∈ ℜn×m is the force distribution vector, which weights the effect
of the external control forces F ∈ ℜm. If m < n the system is said to be underactuated, i.e.
the number of the control forces is less than the size of the vector of the generalized coordinates.
Hence B cannot be inverted. The dynamic model in Eq. (1) can be conveniently partitioned to
highlight the contributions related to the m actuated coordinates qa and the n −m unactuated
ones qu:

[

Maa Mau

MT
au Muu

] [

q̈a

q̈u

]

=

[

Ka(q)
Ku(q)

]

+

[

Ga(q, q̇)
Gu(q, q̇)

]

+

[

Ba

0

]

F (2)

This partition shows that the motion of the unactuated coordinates is determined by the
motion of the actuated ones as:

q̈u = M−1

uu (Ku +Gu)−M−1

uuM
T
auq̈a (3)

Conversely, the actuated coordinates can be forced to follow a prescribed trajectory qref
a by

choosing a proper control force profile, which is usually determined by the control scheme adopted.
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The availability of high-bandwidth closed loop control schemes, together with feedforward actions,
can boost correct tracking of the desired trajectory for the actuated dofs. Under these circum-
stances, as often done in literature ( see e.g. [41, 42, 2], just to mention a few notable examples),
perfect tracking can be assumed, i.e. the actual trajectory is assumed to be equal to the planned
one: qa(t) = qref

a (t).
An improved approach is instead proposed in this paper by assuming a dynamic relationship

between the desired and the actual trajectories of the actuated dofs, that might be expressed
through function h:

q̈a(t) = h(q̈ref
a (t)) (4)

Function h is, in general, an approximation of the actual closed-loop dynamics of the system,
that represents the dynamic behavior of both the actuators and the controller. Under this hy-
pothesis, the system can be described as a first order system of ODEs, with q̈ref

a as the exogenous
input, and with q = [q̇T

u , q̇
T
a ]

T as the state vector:

[

q̈u

q̈a

]

=

[

M−1

uu (Ku(q) +Gu(q, q̇))
0

]

+

[

−M−1

uuM
T
au

I

]

h(q̈a) (5)

This model is different from the one proposed in [32] where motion planning is cast as an
inverse dynamic problem based on the dynamic model of the whole system of Eq. (1). The use
of such a dynamic model with the control forces of the actuated dofs as the control input leads
to the computation of the optimal forces. Hence, it is suitable for control schemes operating in
current control configuration, which are however of less common used. In contrast, the model
formulation adopted in this work casts motion planning as the synthesis of the optimal reference
for the actuated dofs, namely qref

a and its time derivatives. This different approach is justified by
practical considerations. First, industrial controllers are often developed as ”closed” and propri-
etary systems that cannot be modified. In these cases, vibration control can be accomplished by
just setting the suitable motion reference for the actuated dofs (together with a wise tuning of the
controller gains). Then, the forces required to perform the prescribed motion are computed by
the axis controllers of the actuated dofs, through the feedback and the feedforward contributions.
This second important feature gets rid of unmodeled dynamics, such as frictions and unknown
external forces, which might introduce severe steady-state errors in the final positioning in the
case of computed force approaches. Hence, robustness issues are less severe and additional robust-
ness properties of the trajectories developed should be be ensured with respect to a few critical
parameters.

A practical approach for implementing Eq. (5) is to approximate the dynamics of the controlled
DOFs, i.e. function h, through a few dominant poles of the controlled system. An effective
approach is for example assuming a first-order linear and time-invariant model, with unitary gain
and a positive time constant τ representing the zero steady-state error and the limited bandwidth:

...
qa(t) = −

1

τ
q̈a(t) +

1

τ
q̈ref
a (t) (6)

The inclusion of Eq. (6) into Eq. (5) requires augmenting the state vector with q̈a as follows:

[

q̈u...
qa

]

=

[

M−1

uu (Ku(q) +Gu(q, q̇))−M−1

uuA
T
auq̈a

−
q̈a

τ

]

+

[

0
1

τ

]

q̈ref
a (7)

This model formulation fits the classical form of a set of first order ordinary differential equa-
tions usually adopted in control theory, with u the control vector and x the state vector:

u = q̈ref
a x =

[

q̇u

q̈a

]

ẋ = f(x, t,u) (8)
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2.1. Trajectory planning: variational formulation

This section proposes a solution to the problem of defining optimal trajectories for systems
modeled as in Eq. (5) in point-to-point motion tasks. The problem is then extended to include
robustness conditions as well. The method is proposed for point-to-point motions, i.e. when
just the initial and final boundary conditions are imposed at the beginning and the end of the
task. Between them, the planned trajectory is free and is chosen among the infinite trajectories
connecting the two boundary points as the one minimizing a suitable scalar cost function J :

J =

∫ tf

t0

g(x, t,u)dt (9)

A general formulation of J is proposed in Eq. (9) by means of an arbitrary function g(x, y,u)
that is used to shape the properties of the resulting trajectory. Trajectory planning is therefore
stated as the following constrained optimization problem:







































min J(x(t), t,u) = min

tf
∫

t0

g(x, t,u)dt

subject to :
x(t0) = x0

x(tf ) = xf

ẋ(t) = f(x, t,u)

(10)

The solution to the optimization problem of Eq. (10) leads to the definition of a trajectory
x(t) that optimally drives the underactuated system from the configuration x0 at t0 to the con-
figuration xf at time tf while minimizing J . The solution to this problem can be found using
the calculus of variations and Pontryagin’s Minimum Principle (PMP) [43]. According to the
common nomenclature, this kind of approach is commonly referred as the variational formulation
to the trajectory planning [23]. This technique is of wide and convenient application for solving
problems as in Eq. (10), since they can be solved numerically by either general purpose computing
environments, such as MATLABTM [44] or optimization softwares such as PSOPT [45]. In the
case of linear problems, the solution can also be found analytically in closed form [46] by using
exponential matrices.

The optimization problem does not take into account the presence of any perturbations to the
dynamic model expressed by Eq. (8). Hence the trajectory planning problem in Eq. (10) will
be referred as the “nominal” problem, being based on the nominal model of Eq. (8). In order
to tackle the presence of uncertainties, a “robust” problem can be defined by augmenting the
formulation of Eq. (10) with the sensitivity functions computed with respect to some uncertain
parameters.

The definition of the sensitivity functions and the proposed re-formulation of the problem
are based on the method proposed in [32]. The developments are made with reference to a
single uncertain parameter, since the extension to an arbitrary set of uncertain parameters is
straightforward.

In the presence of uncertainty affecting an arbitrary parameter µ, the dynamic equation of the
system can be written as:

ẋ(t) = f(x, t,u, µ) (11)

If f is continuous in (x, t, µ) and is continuously differentiable with respect to x and µ for any
value of (x, t, µ) in the interval [t0, t], then the system response x(t, µ) can be written as:

x(t, µ) = x(t0) +

∫

t

t0

f(s,x(s), µ)ds (12)

The partial derivative of x(t, µ), denoted S(t), made with respect to the uncertain parameter µ
is used to describe the effects of the variation of the uncertain parameter on the system dynamics:
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S(t) =
∂x(t)

∂µ
=

∫ t

t0

[

∂f(s,x(s, µ), µ)

∂x
xµ(s, µ) +

∂f(s,x(s, µ), µ)

∂µ

]

ds (13)

S(t) is the sensitivity function associated with the parameter µ, whose nominal value adopted
in the nominal model is µ0.

With the aim of incorporating enhanced robustness properties, the sensitivity function can be
used to augment the optimization problem, which is now constrained by the augmented dynamics:

ẋr(t) = f r (x,S, t,u, µ) =





f(x, t,u, µ)
∂f(x, t,u, µ)

∂µ





µ=µ0

;

xr(t) :=

[

x(t)
S(t)

]

(14)

The complete reformulation of the nominal optimization problem of Eq. (10) is therefore:







































































min Jr(xr, t,u) = min

tf
∫

t0

gr(xr, t,u, µ)dt

subject to :
x(t0) = x0

x(tf ) = xf

S(t0) = 0
S(tf ) = 0
ẋ(t) = f(x(t), t,u, µ)

Ṡ(t) =
∂f(x(t), t,u)

∂µ

(15)

In other words, the robust optimization problem includes the additional constraints on the
sensitivity function dynamics and the boundary values of the sensitivity functions, which are
forced to be zero at the initial and final time. These additional boundary conditions are used
to impose minimal sensitivity, i.e. maximum insensitivity, to the effects of the deviation of the
nominal parameter µ from its nominal value µ0.

As far as the solution of the augmented problem is concerned, standard methods employing
the Pontryagin’s Minimum Principle can be used [47, 23]. By defining the Hamiltonian of the
system:

H = gr + λ
T f r(xr, t,u) (16)

λ = [λ1, . . . , λN ]
T

is the vector of the Lagrangian multipliers, that has the same size as xr.
The role of the Lagrangian multipliers is to specify that the optimization problem is constrained
to the dynamics of system. The necessary conditions for the optimal solution of the problem of
Eq. (15) are then:

ẋ =
∂H

∂λ
; λ̇ = −

∂H

∂x
;

∂H

∂u
= 0; (17)

Analytic solutions to this kind of problem are practically achievable only in a limited number
of simple cases. For the other ones a numerical solution should be found by using collocation
methods [48] or shooting methods [49].
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3. Double pendulum crane: dynamic system

This section proposes the dynamic model of the system used for the experimental evaluation of
the effectiveness of the proposed method. The system aims at replicating the dynamics of a double
pendulum crane, which comprises of a cart which travels along the horizontal direction. The cart
carries a double cascaded pendulum, built using two sections of fixed-length cable, whose lengths
are L1 and L2. According to the nomenclature shown in Fig. 1, the position of the cart is denoted
ycart, while the two angular displacements of masses m1 and m2 are θ1 and θ2, respectively. The
angle θ1 is measured in an absolute reference frame, while the angle θ2 is relative to θ1. The
horizontal position of the two masses are, in the same fashion, denoted y1 and y2, respectively. y1
and y2 are the two unactuated dofs, and the cart displacement ycart is the only actuated one. The
cart motion is imposed through the acceleration profile ÿcart(t).

Figure 1: Kinematic model of the double pendulum crane used for the experiments

The dynamic model governing the motion of the unactuated subsystem, can be defined, using
the Lagrangian formalism, as the set of the two second-order nonlinear differential equations:

(m1 +m2)
[

L1θ̈1 + gsin(θ1)
]

+

m2L2

[

(

θ̈1 + θ̈2

)

cos(θ2)−
(

θ̇1 + θ̇2

)2

sin(θ2)

]

= ÿcart (m1 +m2) cos(θ1)

(18)

L2

(

θ̈1 + θ̈2

)

+ g sin(θ1 + θ2)+

L1

[

θ̇2
1
sin(θ2) + θ̈1cos(θ2)

]

= ÿcartcos(θ1 + θ2)

(19)

The state vector of the model in Eq. (7) is therefore assumed as:

x(t) =
[

ÿcart, θ̇1, θ̇2

]T

(20)

and the exogenous input is u(t) =
...
y cart(t). According to this re-definition of the input, the

vector of actuated dofs will now include the cart acceleration, i.e. q̈a(t) = ÿcart(t), while the
vector of the underactuated dofs is qu(t) = [θ1(t), θ2(t)]

T . According to the notation of Eq. (7),
the dynamic model can be written using:

Ba = 1; Ka = 0; Ga = 0; (21)
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Mau =

[

L1 (m1 +m2 (1 + L2cos(θ2))) m2L2cos(θ2)
L1cos(θ2) + L2 L2

]

(22)

Ku =

[

−g(m1 +m2)sin(θ1) + ÿcart(m1 +m2)cos(θ1)
−gsin(θ1 + θ2) + ÿcartcos(θ1 + θ2)

]

(23)

Gu =

[

m2L2(θ̇
2
1
+ θ̇2

2
)sin(θ2)

−L2
1
θ̇2
1
sin(θ2)

]

(24)

The first-order formulation of the model defined in Eq. (21-24) can be used to plan the
trajectory according to equations (10) and (15). The latter is defined according to the definition
of an uncertain parameter, which in this case is chosen as the length of the first cable L1. The
optimal trajectory will be therefore made robust against the deviation of L1 from its nominal
value, that might be due to an unmodeled change of such a length or an estimation error.

The dynamic model of the double pendulum crane should therefore be augmented with the
sensitivity functions. It should be noted that the sensitivity functions corresponding to the motion
of the cart, i.e. ∂ycart

∂L1

and its time derivatives, can be omitted from the augmented model since
they are always zero. Conversely, the dynamics of θ1(t) and of θ2(t) do depend on L1. Therefore
the state of the dynamic model used for the robust planning must be augmented as:

xr(t) =
[

ÿcart, θ̇1, θ̇2, ẏcart, θ1, θ2, ycart, ṡ1, ṡ2, s1, s2

]T

(25)

The additional sensitivity function are defined, according to Eq. (26) as:

s1(t) =
∂θ1(t)

∂L1

; s2(t) =
∂θ2(t)

∂L1

;

ṡ1(t) =
∂θ̇1(t)

∂L1

; ṡ2(t) =
∂θ̇2(t)

∂L1

;

(26)

The functions ṡ1(t) and of ṡ2(t) are evaluated analytically according to Eq. (14).

4. Numerical results and comparison with input shaping

This section a compares the trajectories resulting form the application of the variational formu-
lation proposed in the previous section and the ones resulting from three input shaping methods,
which are assumed as the benchmark.

Input shaping consists in a re-definition of a reference profile by convolving it with a sequence
of a finite number of impulses [13]. In other words, the trajectory actually fed to the mechanism
is the linear combination of two or more repetitions shifted in time of the original one. This
method can be applied to achieve some dynamic properties that the original trajectory cannot
comply with. Usually the target is to achieve null residual vibrations. Such a condition can be
achieved for any arbitrary original motion law, provided that the amplitude and the time delays
of the convolved pulses are set correctly. Additionally, the plant must be described with sufficient
accuracy by a the adopted linear model [14]. The most common solution is the the so-called
Zero Vibration (ZV) shaper, which achieves null residual vibration by placing the second pulse
half of the damped oscillation period after the first one [13]. Another option is to use a Negative
Zero Vibration (NZV) shaper, which allows reducing the overall delay from half period to one
third of the vibrational period [50]. These two methods are however quite affected by a limited
robustness: a significant improvement can be achieved by using the solution provided by the Zero
Vibration and Derivative (ZVD) shaper [50], which is also embodied in this work as a benchmark
to establish a comparison with the robust variational formulation presented in the previous section.
These three methods have been originally developed for a single mode oscillating system, but they
all can be adapted to multi-mode systems simply by cascading several shapers, each individually
tuned for the specific mode to be eliminated at the motion end, according to [13]. It should be
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also noted that the three cited shaping methods are developed under the assumption of a linear
behavior of the plant, and therefore they generally cannot ensure zero residual vibration when
applied to control large oscillations of nonlinear systems, unlike the method proposed here.

A first comparison between the proposed method and some input shaping methods is reported
in Fig. 2 and 3. The first one shows the speed and the acceleration profile obtained with the
nominal vibration solution, as well as the one obtained with the ZV and NZV shaper. In the last
two cases the shaping is obtained by filtering a fifth-order polynomial trajectory, chosen so that
initial and final acceleration of the cart can be set to zero. The trajectories are designed to achieve
a displacement of the cart equal to 0.3 m in 3 seconds. It should be pointed out that the ZV
shaper introduces an overall delay equal to 1.211 s, i.e. the sum of the two half periods of the two
modes of the system, according to the properties of the mechanism provided in Table 1. ω1 and ω2

are the oscillation frequencies of the double pendulum, evaluated by linearizing the model about
the vertical equilibrium position (θ1 = θ2 = 0). In order to retain a total motion time equal to 3 s,
the original unshaped fifth-order trajectory is designed to last 1.789 s. The negative input shaper
is designed to introduce a delay equal to 0.808 s, and therefore the original unshaped trajectory
is scaled to a total execution time equal to 2.192 s.

Parameter Value Unit
L1 0.470 m
L2 0.391 m
m1 0.192 kg
m2 0.201 kg
ω1 3.640 rad/s
ω2 9.017 rad/s

Table 1: Double-pendulum crane: model parameters
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Figure 2: Speed and acceleration profiles: nominal variational solution, ZV and NZV shaper

Figure 2 shows that the three “nominal” trajectories lead to similar peak speed and acceler-
ations. The application of the input shaping methods has also the drawback of losing the jerk
continuity of the original fifth-order trajectory, thus leading to a motion profile that requires an
high bandwidth servo-system for accurate tracking of the prescribed motion profile. Moreover,
the execution time of the trajectory is lower bounded by the prescribed delay between the two
convolving pulses when using the shaping, and therefore the absolute minimum execution times
are 1.789 s and 0.808 s for the ZV and ZVD shaper, respectively. On the other hand, the solution
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based on the variational formulation is not affected by this bound on the minimum completion
time.

The solution to the variational formulation approach is obtained by imposing that the initial
and final position of the cart are ycart(t0) = 0 and ycart(tf ) = 0.3 m, respectively. The other
elements of the state vector, as defined in Eq. (20) are set to zero both at initial and final time, in
order to achieve initial and final acceleration of the cart as well as null residual vibrations starting
from static conditions. The cost functional used in the solution of the nominal problem of Eq. (10)
and of the robust problem of Eq. (15) is set as g = 1/2

...
y 2

cart, therefore a minimum jerk problem
is set-up and solved. Other countless choices are available: in particular it might be convenient
to include in the cost function also the cart acceleration, which can be useful to cope with the
bandwidth limitation of the servo system that drives the cart or to reduce the actuator effort.
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Figure 3: Speed and acceleration profiles: robust variational formulation and ZVD shaper

A similar comparison is set between the two robust solutions, namely the ZVD shaper and the
robust variational formulation. The comparison in terms of cart speed and acceleration is provided
in Fig. 3, for a trajectory that performs a cart translation equal to 0.3 m in 3 seconds, as in the
previous case. The minimum motion time that can be be theoretically achieved with the ZVD
shaper is equal to 2.432 s, i.e. the sum of the periods of oscillation of the two masses, as measured
for small displacements. This constraint results in the highest values of speed and acceleration
for any of the trajectories analyzed here. A more detailed comparison can be established using
the data available in Tables 2 and 3, which list the main kinematic properties of the trajectories
based on the nominal variational formulation and of the the robust variational approach, which are
referred to as NVF and RVF, respectively. The properties of the trajectory designed using the three
aforementioned shaping techniques are reported as well, and the are indicated by their common
abbreviation, i.e. ZV, NZV and ZVD. Table 2 shows that the application of the ZVD shaper
results in a peak acceleration that is roughly equal to 0.7 rad/s2, while the robust variational
formulation requires less than the half of that. The nominal variational solutions, as well as the
ZV and NZV shaper require less than a third of the cart peak acceleration prescribed by the
ZVD shaper. The estimated values of RMS acceleration show that, again, the application of the
ZVD shaper is significantly less convenient than the application of the other methods. A less
pronounced difference between the 5 trajectories is found between the peak and RMS values of
the cart speed, again according to Tables 2 and 3.

4.1. Robustness analysis

A further comparison can be set among the considered trajectories to estimate the effects of
an unmodeled perturbation to the system. Robustness has been estimated by the system response
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to the planned trajectories with a varying cable length L1, that is perturbed in the ±30% range
from its nominal value, shown in Table 1.

Performances are assessed through the residual load swing, measured as the peak

value of the oscillation of mass m2 after motion completion. As expected, all the five
methods lead to negligible residual load swing in the case of the nominal conditions L1 = 0.470
m, and an increasing and slightly asymmetric performance degradation is encountered when the
length of the first cable is either made longer or shorter. The results shown in Fig. 4 make
evident that the nominal variational approach present a robustness property which is similar to
the ones of the ZV and NZV trajectories, with a slight improvement over the ZV technique. A
higher robustness is ensured for the robust variational formulation and for the ZVD solution,
with the latter being less sensitive to variations of L1. The sensitivity achieved by the variational
formulation can also be modified by altering the optimization problem of Eq. (15): for example
it has been observed that including the values of the sensitivities s1 and s2 in g′ results in a lower
overall sensitivity, at the cost of achieving higher peak values of cart acceleration and jerk. This
feature is interesting since it gives more degrees of freedom in the design, to optimize the dynamic
behavior or to choose the best trade-off between some conflicting performance specifications.
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Figure 4: Comparison of peak residual load swing for ±30% variation on cable length L1: variational approach
versus input shaping

ẏmax ÿmax θ1max θ2max

NVF 0.180517 0.208494 0.033474 8.5518e-03
RVF 0.210102 0.333652 0.026881 0.020872
ZV 0.178374 0.225946 0.034011 9.3271e-03
NZV 0.181720 0.214119 0.029477 6.2099e-03
ZVD 0.243682 0.706665 0.030016 0.027062

Table 2: Comparison between variational approaches and input shaping, for T = 3 s: peak values of kinematic
variables
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ẏRMS ÿRMS θ1RMS θ2RMS

NVF 0.118199 0.135000 0.020983 4.7747e-03
RVF 0.113097 0.183944 0.015653 0.012426
ZV 0.129241 0.138253 0.023210 5.2253e-03
NZV 0.125924 0.128909 0.020116 3.8121e-03
ZVD 0.122832 0.395524 0.016201 0.012206

Table 3: Comparison between variational approaches and input shaping, for T = 3 s: RMS values of kinematic
variables

5. Experimental results

The experimental validation of the effectiveness of the proposed method is proposed in this
section together with the comparison with the input shaping methods. The double pendulum
crane system is implemented by mounting a double pendulum with concentrated masses on the
end-effector of an Adept Quattro s650h robot. Such a manipulator provides three translations
and one rotation of the end effector, with high peak acceleration and speed. A picture of the
manipulator used for the tests, together with the double pendulum, is shown in Fig. 5. The robot
is controlled by the proprietary Adept SmartController. The robot controller is set-up so that
the end-effector of the robot follows the trajectory profile supplied in real-time by an external
trajectory generator implemented using MATLAB xPC Target, whose sample frequency is 1 kHz.
Such a real-time device also takes care of collecting the measurements, which include the actual
position of the end-effector of the robot and the angular displacement of the cable which connects
mass m1 with mass m2, therefore providing a measurement of θ1(t) + θ2(t). The measurement of
the cable swing is performed using an artificial vision system, which analyzes the data acquired
by a camera. The sampling frequency of the measured angular displacement is 50 Hz.

The communication between the xPC Target device and the robot controller is performed using
the Ethernet protocol. This method, which is necessary to comply with the features of the robot
controller, does not provide a deterministic timing and introduce a sensible delay. Therefore, the
reference trajectory fed to the controller is a slightly distorted version of the one generated by
the xPC Target device. Additionally, the interpolations made by the controller further introduce
some modifications of the actual reference. This make the achievement of perfectly null residual
vibration impossible in practice, especially when fast motions are performed.
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Figure 5: Prototype of the double pendulum crane

5.1. Nominal plant

A first experimental comparison is set using the “nominal” plant in the trajectory generation,
i.e. by setting the length of the two ropes and the weight of the masses as those in Table 1. All
the trajectories are performed for T = tf − t0 = 2.5 s, which should be considered a high-speed
motion in comparison with the load oscillation period. Indeed, faster trajectory can be handled
by all the methods compared here, with the exception of the one generated by the ZVD shaper.
The prescribed cart displacement is set to 0.3 m: the amplitude of this displacement is limited by
the specifications of the camera used to measure the cable oscillation.

The first result is presented in Fig. 6, which shows the results of the application of the
trajectory generated trough the solution of the nominal variational problem. This plot, as well as
the following ones, shows the measured cart position ycart fed back by the robot controller and the
estimated horizontal positions of the two masses, which are indicated as y1 and y2, respectively.
The latter measurements are performed by using an off-line estimation algorithm that implements
an observer. The tuning of the observer is not critical, given the relative limited bandwidth of the
oscillatory dynamics exhibited by the system.

Figure 6 presents also a magnified view of the masses oscillations in the ±10 mm range, which
show a residual oscillation that is roughly equal to ±2 mm. This small residual vibration is mainly
due to the unmodeled effects of the limited accuracy of the robot tracking system, as well as the
effects of the trajectory distortion caused by the non-deterministic communication between the
trajectory generator and the robot controller. However, the results are still very satisfactory given
that the overall motion time is quite fast, being only marginally larger than the sum of the two
period of oscillation of the double pendulum.

The signals shown in Fig. 7 have been obtained through the solution of the robust variational
problem formulation. The resulting accuracy in achieving limited residual vibrations is higher than
the one obtained in the previous case: the measured oscillation of the second mass is within the ±1
mm range. This results indicates that, despite the higher peak acceleration required by the robust
trajectory and the slightly lesser tracking precision, the prescribed final condition is obtained with
more precision than in the previous case. Although not shown in the plots, the robust trajectory
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Figure 6: Experimental application of the nominal trajectory, variational approach for T = 2.5 s

requires higher peak acceleration of the cart, and therefore the robot robot position tracking is
less precise than in the previous case.
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Figure 7: Experimental application of the robust trajectory, variational approach for T = 2.5 s

Good performances is achieved also when the trajectory generated by the ZV shaper is tested,
as shown in Fig. 8: the peak amplitude of the residual vibrations is in this case slightly larger
than the one obtained with the robust solution and slightly smaller than the one obtained with
the solution to the nominal variational problem formulation.

A lesser accuracy is obtained for the trajectory produced by the NZV shaper, which has a peak
of the residual vibration similar to the one obtained using by the nominal variational approach.

The negative shaper and the robust shaper produce trajectories that are more demanding in
terms of trajectory tracking, when compared with the results presented above. In particular, the
robust ZVD shaper, which is here operated close to its lower time bound, produces a pronounced
residual oscillation, whose peak amplitude is close to 8 mm. The large amplitude of the load
oscillations are also due to the limited accuracy of the linear approximation of the dynamic model
that is needed to tune the shaper.
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Figure 8: Experimental application of the trajectory obtained with the ZV shaper, for T = 2.5 s
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Figure 9: Experimental application of the trajectory obtained with the NZV shaper, for T = 2.5 s
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Figure 10: Experimental application of the trajectory obtained with the ZVD shaper, for T = 2.5 s
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5.2. Perturbed system

The same trajectories already shown in figures 6-10 have been tested in the case of a perturbed
plant. The length of the upper cable is shortened to 0.42 m, therefore causing a 3.11% increase
to ω1 and a 2.53% increase to ω2. Despite the relatively small changes to the modal properties of
the system, the amplitude of the residual vibration is sensibly larger for the nominal variational
approach, as can be seen in Fig. 11. In contrast, the robust variational approach reacts effectively
to the unmodeled change just by producing a slightly more pronounced residual oscillation com-
pared with the unperturbed system, as from the direct comparison between the plots in Fig. 7
and 12.
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Figure 11: Experimental application of the nominal trajectory, variational approach for T = 2.5 s to the perturbed
system
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Figure 12: Experimental application of the robust trajectory, variational approach for T = 2.5 s to the perturbed
system

The response to the nominal trajectory, obtained with the variational approach, as visible in
Fig.11, can be compared with the equivalent experiment done with the ZV shaper, as in Fig. 13
and the NZV shaper, as in Fig. 14, as well. As predicted by the theoretical sensitivity shown
in Fig. 4, the NZV shaper shows the most limited residual vibration amplitude among the three
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non-robust methods. The largest residual oscillation are encountered when using the ZV shaper,
while the nominal variational approach shows a slightly better performance than the ZV shaper,
but still represents a sensible step-back in terms of robustness when compared with the robust
variational approach.

6 8 10 12 14 16
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t   [s]

y ca
rt

,1
,2

   
[m

]

 

 

y
cart

y
1

y
2

10 11 12 13 14 15
0.29

0.295

0.3

0.305

0.31

Figure 13: Experimental application of the trajectory obtained with the ZV shaper, for T = 2.5 s, to the perturbed
system
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Figure 14: Experimental application of the trajectory obtained with the NZV shaper, for T = 2.5 s, to the perturbed
system

As expected, and as shown by the results shown in Fig. 15, the unsatisfactory results shown
by the application of the trajectory generated using the ZVD shaper to the nominal plant, are
equally limited when applied to the perturbed plant. The comparison between the results in Fig.
12 and the ones in Fig. 10, makes evident that the proposed robust variational approach to the
definition of trajectories is of convenient application when the motion task is to be completed
within a time durations that is similar to, or even smaller than the oscillation period. Moreover,
the gap between the performances of the proposed variational approach and the input shaping
methods is reasonably expected to be wider in the cases in which the nonlinear effects of the
dynamics, that are neglected in the classical input shaping framework, are more relevant.
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Figure 15: Experimental application of the trajectory obtained with the NZV shaper, for T = 2.5 s, to the perturbed
system

Further results are presented in Fig. 16, which shows the measured peak values

of the load swing when altering the length of the cable L1 in the ± 30% range from its

nominal value. Each point of the graph is obtained by averaging the outcome of six

repetitions of the same test. The results provide experimental evidence of the reduced

sensitivity to model uncertainties when the robust shaper and the robust variational

solutions are tested, given that a significant alteration to the oscillating mode of

the system corresponds, in both cases, to an increase of the residual oscillation that

is a most equal to 7 mm. Such measure is in good agreement with the numerical

results presented in Fig. 4. Figure 16 shows that the effectiveness of the ZVD

shaper is however severely affected by the limited bandwidth of the robot position

tracking system, since the best achievable residual load swing is never smaller than

8 mm. Such a limitation is less relevant when the other techniques are used, since

the experimental results are in good agreement with the nominal ones presented in

section 4.1 and in Fig. 4.
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Figure 16: Comparison of peak residual load swing for ± 30% variation on cable length L1: experimental results
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6. Conclusion

This paper proposed the experimental validation of a model-based robust trajectory planning
method for nonlinear systems. Compared with a standard variational formulation, the tested
method allows improving the parametric robustness through the inclusion of additional constraints
on the sensitivity functions of the model used for trajectory planning. The improved robustness
is proved through the analysis of the residual vibration in a rest-to-rest motion for a double
pendulum crane, showing that the method allows for the reduction the effect of unmeasured
changes to the properties of the plant. A comparison is also set with three well-established input
shaping methods, showing that the proposed solution offers better performances, especially when
fast motion is required. In particular, the robust variational formulation leads to a trajectory that
is easier to track than the equivalent one obtained with the robust ZVD shaper for motion times
that are close to the sum of the two periods of oscillation of the system. This feature has positive
effects on the overall motion accuracy and on the residual vibrations.

[1] M. Benosman, G. Le Vey, Control of flexible manipulators: A survey, Robotica 22 (05) (2004)
533–545.

[2] L. Biagiotti, C. Melchiorri, Trajectory planning for automatic machines and robots, Springer
Science & Business Media, 2008.

[3] A. Abe, An effective trajectory planning method for simultaneously suppressing residual
vibration and energy consumption of flexible structures, Case Studies in Mechanical Systems
and Signal Processing 4 (2016) 19–27.

[4] A. Ata, Optimal trajectory planning of manipulators: a review, Journal of Engineering Science
and Technology 2 (1) (2007) 32–54.

[5] B. Siciliano, O. Khatib, Springer handbook of robotics, Springer-Verlag New York Inc, 2008.

[6] R. Bearee, A. Olabi, Dissociated jerk-limited trajectory applied to time-varying vibration
reduction, Robotics and Computer-Integrated Manufacturing 29 (2) (2013) 444–453.

[7] A. Gasparetto, V. Zanotto, A new method for smooth trajectory planning of robot manipu-
lators, Mechanism and Machine Theory 42 (4) (2007) 455–471.

[8] A. Gasparetto, A. Lanzutti, R. Vidoni, V. Zanotto, Experimental validation and comparative
analysis of optimal time-jerk algorithms for trajectory planning, Robotics and Computer-
Integrated Manufacturing 28 (2) (2012) 164–181.

[9] W. Aribowo, K. Terashima, Cubic spline trajectory planning and vibration suppression of
semiconductor wafer transfer robot arm, International Journal of Automation Technology
8 (2) (2014) 265–274.

[10] N. Uchiyama, S. Shigenori, K. Haneda, Residual vibration suppression using simple motion
trajectory for mechanical systems, SICE Journal of Control, Measurement, and System Inte-
gration 8 (3) (2015) 195–200.

[11] R. Bearee, New damped-jerk trajectory for vibration reduction, Control Engineering Practice
28 (2014) 112–120.

[12] C. T. Kiang, A. Spowage, C. K. Yoong, Review of control and sensor system of flexible
manipulator, Journal of Intelligent & Robotic Systems 77 (1) (2015) 187–213.

[13] W. Singhose, Command shaping for flexible systems: A review of the first 50 years, Interna-
tional Journal of Precision Engineering and Manufacturing 10 (4) (2009) 153–168.

[14] N. C. Singer, W. P. Seering, et al., Preshaping command inputs to reduce system vibration,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1988.

P. Boscariol, D. Richiedei, Robust point-to-point trajectory planning for nonlinear underactuated systems:

theory and experimental assessment, Robotics and Computer-Integrated Manufacturing 50, pp. 256-265, 2018

page 20/22



[15] T. D. Tuttle, W. P. Seering, A zero-placement technique for designing shaped inputs to
suppress multiple-mode vibration, in: American Control Conference, 1994, Vol. 3, IEEE,
1994, pp. 2533–2537.

[16] L. Y. Pao, T. N. Chang, E. Hou, Input shaper designs for minimizing the expected level of
residual vibration in flexible structures, in: American Control Conference, 1997. Proceedings
of the 1997, Vol. 6, IEEE, 1997, pp. 3542–3546.

[17] L. Biagiotti, C. Melchiorri, FIR filters for online trajectory planning with time-and frequency-
domain specifications, Control Engineering Practice 20 (12) (2012) 1385–1399.

[18] P. Besset, R. Bearée, O. Gibaru, FIR filter-based online jerk-controlled trajectory generation,
in: Industrial Technology (ICIT), 2016 IEEE International Conference on, IEEE, 2016, pp.
84–89.

[19] D. Hull, Conversion of optimal control problems into parameter optimization problems, Jour-
nal of guidance, control, and dynamics 20 (1) (1997) 57–62.

[20] A. Abe, K. Hashimoto, A novel feedforward control technique for a flexible dual manipulator,
Robotics and Computer-Integrated Manufacturing 35 (2015) 169–177.

[21] H. Kojima, T. Kibe, Optimal trajectory planning of a two-link flexible robot arm based on
genetic algorithm for residual vibration reduction, in: IEEE/RSJ International Conference
on Intelligent Robots and Systems, Vol. 4, 2001, pp. 2276–2281.

[22] M. Korayem, A. Nikoobin, V. Azimirad, Trajectory optimization of flexible link manipulators
in point-to-point motion, Robotica 27 (6) (2009) 825–840.

[23] D. Kirk, Optimal control theory: an introduction, Dover Publications, 2004.

[24] D. Balkcom, M. Mason, Time optimal trajectories for bounded velocity differential drive
vehicles, The International Journal of Robotics Research 21 (3) (2002) 199–217.

[25] O. Dahl, Path constrained motion optimization for rigid and flexible joint robots, in: Inter-
national Conference on Robotics and Automation, Vol. 2, IEEE, 1993, pp. 223–229.

[26] P. Boscariol, A. Gasparetto, Model-based trajectory planning for flexible-link mechanisms
with bounded jerk, Robotics and Computer-Integrated Manufacturing 29 (4) (2013) 90–99.

[27] M. Bamdad, Time-energy optimal trajectory planning of cable-suspended manipulators, in:
Cable-Driven Parallel Robots, Springer, 2013, pp. 41–51.

[28] D. J. McKeown, W. J. O’Connor, Wave-based control-implementation and comparisons, in:
American Control Conference, 2007. ACC’07, IEEE, 2007, pp. 4209–4214.
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