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Abstract

This paper describes a method for planning energy efficient trajectories for industrial
robots driven by brushless or DC motors with regenerative braking. The optimization problem
is defined upon spline interpolation methods, using piecewise polynomial functions to produce
a trajectory passing trough a sequence of via-points, and on the electromechanical model of
the robot. The formulation introduced in this work is aimed at estimating and optimizing
the energy consumption using closed-form expressions and therefore without the need for any
numerical integration of the robot dynamics. The method accounts for kinematic constraints
on speed, acceleration and jerk, as well as constraints due to the limitations of the power
supply and of the regenerated energy storage system.

1 Introduction

The use of robotic manipulators for the automatic production and handling of goods is expe-
riencing a constant growth. Robots allow to achieve fast and precise operations while lowering
the production costs and reducing the exposure of operators to tedious and potentially dangerous
tasks.

Since a significant part of the manufacturing cost is due to the price of the energy used during
the manufacturing phase, any improvement in this area might be beneficial. The focus on such
target is testified both by a flourishing scientific literature, both by the politics set by the European
Union policy [1], according to which a reduction of the energy consumption of 30% by 2030 is
targeted.n

The manufacturing sector is actually responsible for a significant percentage of the total ener-
getic demand [2], and in this area robotic manipulators and automatic machine plays an essential
role [3, 4]. For this reasons the use of technologies and strategies for the optimization of the
energetic costs of robots is of paramount importance. It is indeed true that a coordinated and
synergistic application of energy-saving methods to key aspects of the whole production process,
thus including robot operation, machining [5, 6] and material handling [7] is certainly one of the
most promising tool for achieving a truly efficient manufacturing industry.

Focusing just on robots, the work [8] showcases the application of several strategies for achieving
power savings up to 40%, by adopting smart solutions for motion planning, energy sharing and
intelligent brake managing. The proposed solutions are actually feasible in industrial applications,
since virtually all automation components catalog offer energy efficient solutions, such as motor
drives with regenerative braking, bi-directional motor drives or energy sharing along DC buses
[9, 10].

Such off-the-shelves technological advancements call for the development of novel robot ap-
plications specifically aimed at improving the energetic efficiency: in this regard a crucial role is
played by trajectory planning algorithms [11]. The choice of motion planning as a fundamental
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tool for achieving the energy efficient operation of an industrial robot is testified also by the avail-
ability of recently approved patents [12, 13]. This fact also showcases the interest on the topic by
robot practitioners and manufacturers as well.

The recent literature review [11] collects the main result of a recently flourishing scientific
literature on the topic. The impact of the choice of the trajectory operated by and industrial
machine has been investigated since the late Seventies, as in the work [14], in which an analytic
framework is proposed to evaluate the total energy consumption when DC motors are used. Further
developments of the same technique, which uses a simple analytic formulation, can be found in
[15] and [16]. The works [15, 16, 17] investigate the design of energy-efficient motion profiles for
constant inertia single degree-of-freedom systems. The last one is of particular interest since it
proposed a method that enables the analytical computation of the optimal trajectory, therefore it
does not require to use numerical integrations or iterative optimization procedures.

A common tool for the computation of optimal motion profiles is the calculus of variation, and
in particular the solution of Euler equations, as used in [18, 19]. Calculus of variation is a very
elegant and efficient method, especially when an analytical solution can be found. When the latter
is not available, the only practical solution is to resort to numerical solutions, which, unfortunately,
are generally restricted to problems described by a limited number of state variables [20]. It should
be however highlighted that variational formulation used in [18, 19] is limited in generality, given
that not all motion design problems can be casted according to the formulation proposed in such
works. A common shortcomings of variational problems is also the limited capability in handling
dynamics with hard nonlinearities and discontinuities.

An alternative powerful and commonly used tool for computing perfected motion profiles is
the use of indirect approaches. The methods belonging to this class are based on the transcription
of the original planning problem into a parameter optimization one. Some of such approaches
[21, 22] are based on experimentally defined models of the energy flow in multi-axis servo systems
and in energy storage devices, while others are based on much more detailed models or virtual
prototypes, such as in [23, 24].

The work [21] explores the concept of synchronizing the point-to-point motion of multiple
independent axes together with extended DC-link capacitance or flywheels, using an iterative
optimization routine. The results are then extended in [22] with further experimental validations.
The procedure used in these two works had already been established in [25], in which Hansen
et.al. proposed a method to optimize the energy consumption of a 6 dofs industrial robot using
iterative numerical integration and limiting to the case of point-to-point motion.

The energy optimization of the motion profile for a slider-crank mechanism is presented in
[24]. This work includes a very detailed analytical model of all the mechanical and electrical
components of the system. Optimization of the point-to-point motion profile is carried out using
the Sequential Quadratic Programming method, by running a MATLAB-Simulink model at each
iteration of the optimization routine. A similar problem is investigated also in [23], by substituting
the analytical formulations of the dynamic model with look-up tables data obtained from a CAD-
bases multibody analysis tool. These works suggest that when the complexity of the model is
made high to include a large amount of details and energy dissipation phenomena, or simply
machines with a complex dynamics are considered, the use of dynamic simulation provided by
dedicated software packages is inevitable. Incorporating into an optimization procedure the results
of complex dynamic simulations has the side effect of shifting the balance between accuracy and
computational burden towards more computationally demanding solutions.

The aim of this work is to propose an effective and computationally efficient method for the
design of minimum energy trajectories for robots with kinematically decoupled axes. An indirect
approach is used, since the trajectory for each joint of the robot is defined by spline functions,
which can be described by a limited set of parameters. Such parameters can be used to provide an
analytic evaluation of the energetic cost associated with the motion design, so that the procedure
can be completed without resorting to iterative numerical integrations of the dynamic model
of the robot. The choice of suitable spline interpolating functions offers also the possibility of
constraining joint speed, acceleration and jerk, as well as to choose the desired level of smoothness
by selecting the most suitable motion primitives. The results are then extended to introduce also
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Figure 1: Three axes Cartesian robot

motor current or motor torque limitations for maximum compatibility with industrial applications.

2 Energy consumption estimation

In this section the analytical model used for estimating the energy consumption of a multi-axis
robot driven by DC or brushless motors and will be recalled. The theory is developed with
reference to a three axes Cartesian robot, as the one shown in Fig. 1.

Since each joint of the robot is kinematically and dynamically independent from the others,
its dynamic model can be expressed as:

Jq̈(t) + Tf(t) + Tc(t) + Text = τm(t) (1)

in which q(t) is the angular position of the motor shaft and τm(t) is the torque exerted by
the motor. The moment of inertia J accounts for the contribution of the motor shaft, of the
translating load mass and of the transmission as well. Tf(t) = fv q̇(t) is the viscous friction force
(with fv the viscous coefficient) and Tc(t) = Tc sgn(q̇(t)) is the Coulomb friction force. External
forces, such as the gravity force, can be included in the contribution Text. The motor torque is
proportional to the current I(t) drawn by the motor, as:

τm(t) = ktI(t) (2)

being kt the motor torque constant. The voltage drop across the motor is described by:

V (t) = RI(t) + kbq̇(t) + L
dI(t)

dt
(3)

in which R and L are the resistance and the inductance, respectively, of the motor windings
and kb is the motor back-emf constant. The instantaneous electric power drawn by the motor can
therefore be estimated as the voltage-current product:

We(t) = V (t)I(t) (4)

The total energy consumption over a time interval [ta, tb] can be estimated from the time
integral of the electric power We(t):

E = ηd

∫ tb

ta

We(t)dt = ηd

∫ tb

ta

V (t)I(t)dt (5)

The overall energy required to operate of the robot, as specified in Eq. 5, is affected by the
efficiency of the drive circuit ηd, according to the approach already used in other works such as
[17]. Assuming that the power dissipated by the drive circuit is proportional to the power absorbed
by the electric motor, a constant coefficient is sufficient to describe most practical situations [26].
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Figure 2: Electric drive: common DC bus connection, with storage capacitor

Without loss of generality, here an unitary drive efficiency is assumed, with the aim of enhancing
the readability of the analytical developments that appear in the following sections of this work.

Despite its conceptual simplicity, this model has been used in many works, such as [27, 28],
and its capability of faithfully predicting the energy consumption of an industrial application have
been reported in [15]. The formulation has been experimentally validated for DC motors [14, 29],
for induction motors [30, 19] and for industrial servo systems [21, 25, 31]. It should be noticed
that the voltage-to-current product can have also negative values: in this case the electric power
will flow from the motor to the electric drive, and therefore a regeneration will take place. In Eq.
5 it is implicitly assumed that all the regenerated energy can be stored by a capacitor or used by
other drives connected on the same electric bus, as shown in Fig. 2. This assumption does not
limit the validity of the model, since the eventual limitation of the regenerated current can be
dealt within the trajectory synthesis phase, as will be shown in the following section. Anyway, it
should be noticed that modern industrial applications have the availability of high energy storage
capacity, either in the form of extended DC-link capacitance [32], supercapacitors or of additional
mechanical axes, e.g. flywheels [22]. Under this assumptions, the overall energy absorbed by the
robot is computed as the sum of the energy required by each motor.

It should be highlighted that the formulation of the total energy consumption according to
Eq. 1-5 can be used to describe the dynamics of a robot through N independent equations only
if the robot axes are kinematically and dynamically decoupled, i.e. if the motion of each axis
of the robot is not affected by the motion of the other ones. This feature limits to a reasonable
amount the complexity of a closed-form analytic representation of the energy required to perform a
trajectory, but the same cannot be stated for a generic robotic architecture in which no mechanical
decoupling exist. The most straightforward method to account for other architectures, such as an
anthropomorphic configuration, would be to numerically solve the inverse dynamics of the robot,
to numerically compute the corresponding values of the instantaneous electric power delivered
to each actuator, and to perform a numerical evaluation of the time integral of Eq. 5. This
procedure, which has been used, among others, in [25], is more computationally expensive and of
lesser flexibility than the analytical closed-form method that is introduced in this paper.
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3 Spline-based trajectory planning algorithms

In this work four different spline trajectory planning algorithms are taken into consideration, and
the analytic formulation of the energy consumption is derived for each of them. The four methods
are based a sequence of polynomial functions, defining a trajectory passing trough N via-points,
as commonly done for robotic manipulators [33, 34]. These planning methods share the design
principle of diving the trajectory into segments, defined by two consecutive via-points: within
each segments the motion is described by a polynomial function. The choice of the degree of each
polynomial function is usually performed according to the required smoothness. In order to cover
a sufficiently wide array of choices, the following algorithms are here adopted: 434 [35], 445 [36],
545 and 5455 [37]. The 434 algorithm uses 4th-degree polynomials to describe the joint positions
for the first segment, i.e between the first and second via-point, and for the last one, while the
remaining sections are described by cubic polynomials. Suitable algebraic constraints are imposed
to achieve speed and acceleration continuity along the whole motion. If superior smoothness is
needed, the 445 trajectory ensures also the jerk continuity for the intermediate via-points, at the
cost of generally requiring higher speeds and accelerations [36]. As the name suggests, the first and
the intermediate segments are defined as 4th-degree polynomial functions, while the last segment
uses a 5th-degree polynomial function. Similarly, the 545 trajectory inherits the properties of the
445 trajectory, while adding arbitrary initial jerk for reduced vibration during the initial phases
of motion. In order to impose the value of jerk at the final via point as well, the 5455 algorithm
can be finally used. This procedure uses quintic splines function for the first, last and next-to-last
segments, while the others are based on 4th-degree ones.

3.1 Energy consumption of the 434 trajectory

The formulation of the energy consumption is here analyzed in detail for the 434 trajectory, while
for the other three just the final results are given in the Appendix. In order to avoid confusing
formulations, all the formulas are reported for a single axis of the robot, since the extension to
the multiple axis case is straightforward for kinematically and dynamically independent axes.

3.1.1 Trajectory computation

The procedure requires to specify N via-points in the joint space through which the trajectory
should pass at some prescribed time instants, collected by vector Q = [Q1, . . . , QN ], together
with the initial and final joint velocities V1 and VN (which are usually set to zero in a rest-to-rest
motion). According to this notation, the joint position during the k-th intermediate section, i.e.
the one between the consecutive point Qk and Qk+1 (with 2 ≤ k ≤ N − 2) is described by the
cubic polynomial function:

qk(t) = bk,1 + bk,2t+ bk,3t
2 + bk,4t

3 (6)

with 0 ≤ t ≤ Tk, in which Tk is the time duration of the k-th segment of the trajectory . The
values of the four coefficients bk,n are univocally defined through the boundary positions Qk and
Qk+1 speeds Vk and Vk+1 as:
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(7)

The five unknown coefficients b1,n of the first polynomial (i.e. for k = 1) are linked to their
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boundary conditions as follows:
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The coefficients of the last segment are linked to the boundary conditions at the last and
next-to-last via point as specified as follows:
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Computing the polynomial coefficients using Eqs. 7,8 and 9 still requires to evaluate N − 2
unknown values of speed at via-points, i.e. V2, V3, . . . , VN−2. The unknown speeds at intermediate
via-points can be found by enforcing the continuity of accelerations at the very same N − 2 via
points, so that:

q̈k(Tk) = q̈k+1(0) (10)

with 1 ≤ k ≤ N − 2. The resulting N − 2 equations can be collected as the linear system of
equations:

Ad = h (11)

The column vector d includes all the unknown velocities at the intermediate via-points:

d = [V2, V3, . . . , VN−1]
T

(12)

The right-hand side vector in Eq. 11 depends on the known positions Qk and on the time durations
Tk:
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Matrix A is a combination of the time intervals Tk. Such a matrix is tridiagonal, and the elements
on its main diagonal are:
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while the diagonals above and below the main one are, respectively:

dA+1 =

[

1

T2
, T3, . . . , TN−2

]

(14)

dA−1 =

[

T3, . . . , TN−2,
1

TN−1

]

(15)

This formulation is chosen since it is computationally efficient, a feature that is needed for large
sequences of via-points. Indeed, the matrix inversion that is required to solve Eq. 11 for the
velocities can be efficiently computed by Gauss elimination being matrix A tridiagonal.

The equations above therefore allow to uniquely define a trajectory passing trough all the
via-points, for a choice of the N via-points, the initial and final velocities, and the vector of time
intervals T = [T1, . . . , TN−1]

A similar procedure can be followed to obtain the formulation for the 445 trajectory, which
requires the inclusion of jerk continuity conditions at via-points in addition to the continuity
conditions of Eq. 10 and to specify initial and final joint acceleration, as specified in [36]. In the
case of the 545 and 5455 trajectories the reader can refer to [37].

3.1.2 Computation of the energetic cost

The formulation of the electric power of a joint can be written, with reference to the k-th segment
of the trajectory, according to Eq. 1,2–4 as follows:

We,k(t) = V (t)I(t) = RI2(t) + kbI(t)q̇(t)

= WJoule,k(t) +Wm,k(t) (16)

Equation 16 highlights that the electric power includes both Joule lossesWJoule and the mechanical
power Wm; the effects of the inductance, which are negligible, are neglected. Joule losses can be
written as:

WJoule,k(t) =
R

k2t
(Jq̈(t) + fv q̇(t) + Tc sgn (q̇(t)) + Text)

2
(17)

or, showing all the terms:

WJoule,k(t) = 2
R

k2t
Tc ((Jq̈(t) + Text) sgn(q̇(t)) + fv|q̇(t)|)

+
R

k2t

(

J2q̈(t) + fv
2q̇(t)2 + T 2

c + T 2
ext + 2Jfv q̇(t)q̈(t) + 2JTextq̈(t) + 2fvTextq̇(t)

)

(18)

The mechanical power is:

Wm,k =
kb
kt

(Jq̈(t) + fv q̇(t) + Text) q̇(t) +
kb
kt

Tc|q̇(t)| (19)

Now the expression of the instantaneous electric power, i.e. the sum of Eq. 18 and Eq. 19, can
be re-arranged by separating the terms proportional to |q̇(t)| and to sgn(q̇(t)) as:

We,k(t) = W1,k(t) +W2,k(t) +W3,k(t) (20)

The proposed re-arrangement allows for a simpler evaluation of both the electric power and the
energy consumption in the k-th segment of the trajectory. Each term is discussed separately in
the following. The terms included in W1,k are a combination of the joint variables q(t), q̇(t), q̈(t)
and of the constant parameters kt, kb, J , Tc, Text. Since the joint variable are described as time
polynomials according to the choice of the motion primitives, the power contributions included in
W1,k(t) can be written in a compact polynomial form:

W1,k(t) =

4
∑

i=0

wi,kt
i (21)
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This polynomial form is particularly convenient for the computation of its time integral over the
interval [0, Tk], which is:

E1,k =

∫ Tk

0

W1,k(t)dt =
4
∑

i=0

wi,k

i+ 1
T i+1
k (22)

The expression of the the polynomial coefficients wi,k depend on the specific segment of the
trajectory under investigation. For the 434 trajectory, three different formulations must be used
for the first segment, for the intermediate ones and the last one. In particular, for the intermediate
segments, i.e. for 2 ≤ k ≤ N − 2, the following holds:

w4,k =
9b3

2fv (Rfv + kbkt)

kt
2 (23)
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6b3kb (3Jb3 + 2b2fv)
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24 + Jb3b218 + 3Textb3 + 6b1b3f

)

kt

+
2R
(

18J2b3
2 + 18Jb2b3fv + 2b2

2f2 + 3b1b3f
2 + 3Textb3f

)

kt
2 (25)

w1,k =
2kb

(

Textb2 + 2Jb2
2 + 3Jb1b3 + 2b1b2f

)

kt

+
4R (3Jb3 + b2f) (Text + 2Jb2 + b1f)

kt
2 (26)

w0,k =
R
(

4J2b2
2 + 4JTextb2 + 4Jb1b2fv + Tc

2 + Text
2 + 2Textb1fv + b1

2f2
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kt
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+
b1kb (Text + 2Jb2 + b1f)

kt
(27)

The formulas for k = 1 and for k = N − 1 are reported in Appendix A.
As far as W2,k is concerned, it can be written as:

W2,k(t) = 2
R

k2t
Tc (Jq̈(t) + Text) sgn(q̇(t)) (28)

It can be noticed that the contribution:

2
R

k2t
JTcq̈(t)sgn (q̇(t)) (29)

is relevant in terms of instantaneous power, but its contribution to the overall energy is null, as
will be shown here. The contribution can be evaluated for the whole duration of the trajectory,
i.e. between 0 and T , by splitting the integral into segments delimited by a change of the sign of
speed, which happens at time ti with i ranging from 1 to m:

T
∫

0

q̈(t) sgn (q̇(t)) dt =

t1
∫

0

q̈(t)dt −

t2
∫

t1

q̈(t)dt+ . . .±

T
∫

tm

q̈(t)dt (30)

Since joint speed is a continuous function, and since the change of sign of speed can happens
only when q̇(t) = 0, i.e.:
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q̇(0) = q̇(t1) = q̇(ti) = q̇(T ) = 0 (31)

the time integral of the contribution in Eq. (30) is always zero for a rest-to-rest motion.
The evaluation of the energy consumption associated with the other power term of Eq. 17

requires to find a closed-form expression for the time integral extended to the whole duration of
the trajectory:

2
R

k2t
TcText

T
∫

0

sgn(q̇(t))dt (32)

Again, making use of the time instants ti at which q̇(t) = 0, i.e. a change of the sign of speed
happens, a piecewise integration can be performed, to that:

T
∫

0

sgn(q̇(t))dt = sgn(q̇(0+))





t1
∫

0

dt−

t2
∫

t1

dt+

t3
∫

t2

dt− . . .±

T
∫

tm

dt



 (33)

An equivalent closed-form expression that involves only sums and products is:

T
∫

0

sgn(q̇(t))dt = sgn(q̇(0+))

(

2

m
∑

i=1

(−1)i+1ti + (−1)mT

)

(34)

The evaluation of Eq. 34 requires to compute the sign of the joint speed at the beginning of the
segment, indicated as sgn(q̇(0+)), which can be simply evaluated as the sign of q̇(t) for a small
value of t, such as 1 ms. Moreover, the roots of the joint speed, i.e. ti, are needed: their quick
computation can be achieved using the matrix companion method [38], and therefore without the
need for an iterative method.

The last power term for which a closed-form expression of its time integral is sought is W3,k:

W3,k(t) = Tc

(

2
R

k2t
fv +

kb
kt

)

|q̇(t)| (35)

The correct formula for evaluating the time integral of |q̇(t)| can be found by piecewise integration
of q̇(t) within the whole trajectory, by separating the segments over which q̇(t) is either positive
or negative:

T
∫

0

|q̇(t)|dt = sgn
(

q̇(0+)
)

·

(

(−1)i+1Q1 + (−1)iQN − 2

m
∑

i=1

(−1)iq(ti)

)

(36)

Summing all the contributions for a single joint for the whole duration of the trajectory, as
provided by Eqs. 22, 28, 34, 35 and 36, the complete formulation of the consumed energy is:

E =

N−1
∑

k=1

(

4
∑

i=0

wi,k

i+ 1
T i+1
k

)

+
2R

k2t
Tc Text sgn

(

q̇(0+)
)

(

2

m
∑

i=1

(−1)i+1ti + (−1)mT

)

+ Tc

(

2R

k2t
fv +

kb
kt

)

sgn
(

q̇(0+)
)

(

(−1)i+1Q1 + (−1)iQN − 2

m
∑

i=1

(−1)iq(ti)

)

(37)

4 Energy optimization

The formulas reported above, and in particular Eq. 37, can be used to formulate an energy
optimization problem. The total energy consumption E is parametrized by the vector of time
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intervals T = [T1, . . . , TN−1] and therefore Eq. 37 can be directly used as the cost function. The
following optimization problem is proposed:































































min
[T1,..,TN−1]

Etot = min
[T1,..,TN−1]

3
∑

j=1

N−1
∑

k=1

Ek,j

subject to:

Vmin,j ≤ q̇j(t) ≤ Vmax,j ;
Amin,j ≤ q̈j(t) ≤ Amax,j ;
Jmin,j ≤

...
q j(t) ≤ Jmax,j ;

with: j = 1, 2, 3; k = 1 . . .N − 1;

(38)

in which Etot is the overall energy consumption of the robot, defined to comply with pre-
defined maximum and minimum values of joint speed, acceleration and jerk, according to the
manipulator limitations and to the smoothness requirements. The energy is evaluated by collecting
the contribution of the three joints of the robot over N − 1 segments of the trajectory. The
outcome of the optimization problem of Eq. 38 is a vector of optimal sequence of time intervals
T = [T1, . . . , TN−1] that ensures minimal overall energy consumption.

The optimization problem is not convex, however a clever selection of the initial guess has
shown to be capable of getting rid of this issue and to boost the achievement of significant energy
reductions. An initial guess for the choice of the time intervals Ti can be effectively obtained using
either the chord length distribution or the centripetal distribution methods, as often proposed in
literature [33].

The inclusion of constraints is quite straightforward given that the maximum values of the
kinematic quantities are easily parametrized by the time intervals Ti, see e.g. [35, 36, 37], and by
the suggested parametrization in terms of time intervals Ti of the cost function which is highlighted
in Eq. 37.

5 Test case I: pick & place task

The dynamic properties of the manipulator used as the test bench for the optimization procedures
are listed in Table 1. The same table includes also the maximum values for speed, acceleration and
jerk expressed in the operative space. The proposed optimization method is first used to compute

parameter joint #1 joint #2 joint #3
Moment of inertia J [kgm2] 0.018 0.01125 0.00675
fv [Nms/rad] 5e−3 5e−3 5e−3

Tc [Nm] 5e−2 5e−2 5e−2

kt [Nm/A] 0.65 0.65 0.65
kb [V s/rad] 0.65 0.65 0.65
R [Ω] 3.3 3.3 3.3
Max. speed [m/s] 1.5 1.5 1.5
Max. acceleration [m/s2] 2.5 2.5 2.5
Max. jerk [m/s3] 20 20 20

Table 1: Dynamic properties of the manipulator

the energy-optimal trajectories for the typical pick & place task, which is commonly performed
by robot in industry. Such a task is defined by the 9 via-points reported in Table 2.

The end-effector path associated with the energy-optimal solution when choosing the 434
method is shown in Fig. 3.
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Via-point X [mm] Y [mm] Z [mm]
1 0 0 0
2 0 0 340
3 20 25.8 380
4 60 77.2 400
5 250 450 400
6 640 822.8 400
7 680 874.2 380
8 700 900 340
9 700 900 0

Table 2: Via-points for the pick & place task
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Figure 3: Via-points and end-effector path in the operative space for the pick & place task, with
the 434 trajectory

The optimization problem of Eq. 38 can be applied again to the same task with the other
three trajectories as well, therefore using the 445, 545 and 5455 methods. In all cases the total
execution time is left free, so that the four solution will lead to different total execution times and
four different energy requirements. To establish a comparison with other commonly used planning
method, the time and energy required in each of the four cases is compared with the results
obtained when choosing, instead of the energy-optimal timing of the trajectory, the timing resulting
from a chord length distribution and the timing resulting from the minimum time solution. When
using the chord length distribution the time required to move between two consecutive via-points is
a fraction of the overall motion time, and the ratio between the two is set by the ratio between the
chordal distance between the two via-points and the chordal length of the whole path. A proper
scaling is then applied when the total execution time that arises from the energy optimal solution
is not compatible with the kinematic constraints. In the minimum time solution the trajectory
is designed to achieve the absolute minimum time to complete the task while respecting the very
same kinematic constraints as in the other two cases. Therefore, whenever made possible by the
kinematic constraints, the trajectory designed with the chord length method will have the same
duration as the energy optimal one. The overall times and energy consumption resulting from this
analysis are reported in Figs. 4 and 5, respectively.

The data presented in Fig. 4 show that the chord length distribution is quite unsuitable to
produce fast trajectories, given that the energy-optimal solution results in faster motion in all four
cases. The performance degradation is more evident in the cases of 545 and 5455 trajectories, for
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Figure 4: Total execution time for the pick & place task, with the 4 trajectories: comparison
between energy-optimal solutions, chord-length time distribution solutions and minimum time
solutions

which a heavy time scaling is required to enforce constraints.
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Figure 5: Energy consumption for the pick & place task, with the 4 trajectories: comparison
between energy-optimal solutions, chord-length time distribution solutions and minimum time
solutions

As far as the energy consumption is taken into consideration, the data shown in Fig. 5 highlight
that the use of a trajectory designed by setting the time distance between consecutive via points
according to chord length distribution can however lead to results that are quite close to the energy
optimality for the two simpler methods, i.e. for the 434 and the 445 trajectories, while a sensible
performance degradation is made evident for the two smoother trajectories, i.e. for the 545 and
5455 trajectories. By comparing the energy optimal solutions with the minimum time solutions,
therefore looking at the first and last groups of bars in Figs. 4 and 5, it can be noticed that for
the case under consideration the proposed solution leads to significant energy improvements at
the cost of a significantly slower execution, so in some practical applications it might be desirable
to adopt a mixed penalty function that takes into account both design objectives.
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5.1 Energy optimality vs. time

The properties of the four optimal trajectories in terms of electric power is shown in Fig. 6, which
plots the time evolution of the electric power absorbed by the actuator which drives the Z axis, and
Fig. 7, which shows the overall power absorption by the three actuators when performing the pick
& place task already discussed above. In particular, Fig. 6 reveals that, as expected, the motion
of the Z axis against gravity during the initial phase of the task is responsible for the largest power
usage. During the last phase, which involves the lowering of the Z axis, the power consumption
is minimal, since motion happens in the same direction of gravity force. The electric power takes
negative values for a brief phase, meaning that some current can be generated and fed back to the
electric drive by the Z axis actuator. The amount of regenerated energy is however quite limited,
given that the work done by gravity force is mostly compensated by the mechanical and electric
losses. A similar situation is found by looking at Fig. 7, which shows the total electric power for
the same task and trajectory: even by summing all the contributions of the three actuators, the
amount of regenerated energy is still small.
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Figure 6: Minimum energy pick & place trajectory: electric power delivered to the motor, Z axis

The motion profiles resulting form the energy-optimal trajectory design for the pick & place
task are shown in Figs. 8–10. Such figures present the results just for the Z axis, by plotting
the velocity, acceleration and jerk profiles in the operative space according to each of the four
algorithms investigated in this work. Figure 8 shows that all the optimal solutions lead to similar
maximum speed, and that the energy-optimal trajectories are executed at a speed that is well
below the maximum allowed by the kinematic limits. As far as the acceleration along the Z-axis
is concerned, all the planning methods, with the exception of the 445 one, require a maximum de-
celeration that reach the imposed acceleration limit. The slightly improved energetic performance
of the 445 planing method over the 434 can be explained by comparing the most significant con-
tribution to the energetic cost, i.e. the power needed to the compensate of the inertial component
of motion. The latter can be estimated by the integral of the squared accelerations: according to
this metric, the lowest value is found, as expected, for the most efficient trajectory, i.e. the one
produced by using the 445 interpolation method. Performing a similar analysis by measuring the
total integral of squared jerk shows that the 445 method produces also the smoothest motion. Fig.
10 shows the time evolution of the joint jerk for the Z axis, and highlights the jerk discontinuities
sported by the 434 method.
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Figure 7: Minimum energy pick & place trajectory: total electric power delivered to the motors
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Figure 8: Minimum energy pick & place trajectory: end-effector speed in the operative space, Z
axis
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Figure 9: Minimum energy pick & place trajectory: end-effector acceleration in the operative
space, Z axis
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Figure 10: Minimum energy pick & place trajectory: end-effector jerk in the operative space, Z
axis
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A more general evaluation of the impact of the choice of the trajectory primitive on the overall
energy consumption for the pick & place task can be performed by looking at the data provided
in Fig. 11. The graph shows the amount of energy required by the robot as a function of the
total execution time. The results indicate that the 434 and 445 trajectories lead to very similar
energetic requirements, regardless of the overall task duration. Moreover, Fig. 11 also shows that
the impact of the choice of the trajectory primitive on the total energy consumption is particularly
significant when reduced cycle times are needed, and that such a difference almost vanished as the
task duration is increased significantly. This effect can be explained by considering that when the
robot is operated at low speed the overall energy consumption is dominated by constant power
terms, such as the ones required to counteract gravity or static friction.
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Figure 11: Minimum energy consumption trajectories for the pick & place task: comparison
between different planning methods

6 Test cases II, III and IV

Three additional tests have been defined to highlight the capability of the proposed method of
producing feasible and effective trajectories. Each test is identified by the shape of the sequence of
via-points, which are defined in the operational space and reported in Tables 2 and 3–5. Since the
four aforementioned planning methods are applied to each task, the additional data can provide
some further insight into the choice of the most suitable method.

Task II, referred as “S–shape motion”, consists in an open-path motion that involves the
simultaneous operation of all the axes of the robot. Tasks III and IV reproduce two slightly more
complicated tasks, designed as a sequence of 13 via-points located along a triangular and square
profiles, respectively.

Via-point X [mm] Y [mm] Z [mm]
1 0 0 200
2 100 100 150
3 0 200 100
4 -100 300 20
5 000 400 0

Table 3: Via-points for task II: S-shape motion
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Figure 12: Task II: via-points and end-effector path in the operative space, 434 trajectory

Figs. 12,15 and 18 show the end-effector path associated with the optimal solution for each
of the three additional tasks when using the 434 planning strategy, as well as the prescribed
via-points.
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Figure 13: Total execution time for task II, with the four trajectories: comparison between
energy-optimal solutions, chord-length time distribution and minimum time solutions

The effects of the application of the proposed energy optimization method are again compared
with the results arising from a trajectory design based on a minim time criterion, and on a chord
length distribution criterion, focusing on task II, III and IV.

The total execution time and the total energy consumption required when executing task II
are shown in Fig. 13. According to such data, all the four primitives ensure that a chord-length
distribution of the time intervals is compatible with the kinematic limits, so that no time scaling is
needed to slow-down the speed of motion. On the average, the minimum time solution is roughly
1 s faster than the energy-optimal solution, but looking at Fig. 14 reveals that the increased
speed comes with a sensible increase of the overall energy consumption, which ranges from 29 %
to 56 %. Figures 13 and 14 show that, even if the total execution time is kept the same, the
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Figure 14: Energy consumption for task II, with the four trajectories: comparison between
energy-optimal solutions, chord-length time distribution and minimum time solutions

choice of the distribution of the time intervals has a major effect on the energy consumption: for
the task under consideration the use of a chord length distribution in lieau of an energy-optimal
distribution requires an additional energetic cost that ranges from 8 % to 57 %.
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Via-point X [mm] Y [mm] Z [mm]
1 0 0 0
2 10 0 0
3 20 0 0
4 30 0 0
5 40 0 0
6 30 70.7 70.7
7 20 141.4 141.4
8 10 212.8 212.8
9 0 282.8 282.8
10 0 212.1 212.1
11 0 141.4 141.4
12 0 70.7 70.7
13 0 0 0

Table 4: Via-points for task III: triangular trajectory
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Figure 15: Task III: via-points and end-effector path in the operative space, 434 trajectory

Figure 16 and 17 highlight that the use of a chord length distribution is not a sensible choice
for the timing of the trajectory for the ’triangular shape’ task, given that it leads to notably high
total execution time, as for the 434 and 445 motion primitives, and high energy consumption, as
for the 545 and 5455 trajectories. An apparent proportionality can be detected when comparing
the results of the application of the minimum time and of the minimum energy criteria: the fastest
solution requires in the average roughly 60 % more energy but the total exectuion time is reduced,
approximately, by one third.
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Figure 16: Total execution time for task III, with the four trajectories: comparison between
energy-optimal solutions, chord-length time distribution and minimum time solutions
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Figure 17: Energy consumption for task III, with the four trajectories: comparison between
energy-optimal solutions, chord-length time distribution and minimum time solutions
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Via-point X [mm] Y [mm] Z [mm]
1 0 0 0
2 0 141.4 141.4
3 0 282.8 282.8
4 100 282.8 282.8
5 200 282.8 282.8
6 300 282.8 282.8
7 400 282.8 282.8
8 400 141.4 141.4
9 400 0 0
10 300 0 0
11 200 0 0
12 100 0 0
13 0 0 0

Table 5: Via-points for task IV: Square
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Figure 18: Task IV: via-points and end-effector path in the operative space, 434 trajectory

Figures 19 and 20 condensate the results of the application of the three motion design method to
the test case IV. Fig. 19 highlights that application of a chord length distribution timing strategy
results in very slow trajectories as the result of the time scaling required to ensure the respect
of kinematic constraints. This time distribution is also quite energetically inefficient, provided
that the associated energy costs are not very dissimilar to the one resulting from a minimum time
criterion. On the average, the minimum time solution requires one third less time and 44 % more
energy than the energy-optimal solution.

Overall, the data shows that the chord-length distribution is not a suggested choice when
high performance is required, since it often leads to long execution times without trading off
for a reduced energy consumption, given that often the trajectories are both slower than the
energy-optimal ones and more energetically expensive than the minimum-time ones. In practical
applications, in which a time-energy tradeoff might be favored, it might be suggested to use mixed
cost optimization designs, such as a weighted time-energy criterion optimization, or to optimize
the energy with a total execution time constraint.
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Figure 19: Total execution time for task IV, with the four trajectories: comparison between
energy-optimal solutions, chord-length time distribution and minimum time solutions
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Figure 20: Total execution time for task IV, with the four trajectories: comparison between
energy-optimal solutions, chord-length time distribution and minimum time solutions

This is a pre-print of an article published in The International Journal of Advanced Manufacturing Technology.
The final authenticated version is available online at: https://doi.org/10.1007/s00170-018-03234-4



P. Boscariol, D. Richiedei: Energy efficient design of multi-point trajectories for Cartesian robots - page 23/30

Pick & Place S Triangle Square
0

1

2

3

4

5

6

to
ta

l e
xe

cu
tio

n 
tim

e 
 [s

]

 

 
434
445
545
5455

Figure 21: Tasks I-IV: comparison of total execution time, minimum energy criterion
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Figure 22: Tasks I-IV: comparison of energetic cost, minimum energy criterion

An overall comparison between the execution times and the energy costs resulting from the
application of the energy-optimal criterion when reproducing all four tasks can be performed by
analyzing the data presented in Fig. 21 and Fig. 22.

Such figures shows that the shorter execution times are, generally, the result of using lower
degree primitives. In particular, the 434 trajectories ensures both minimum execution time and
energy consumption for all the examined tasks, with the exception of the pick & place task, for
which the 445 ensures a marginally better results.

The difference between the total energy consumption and the total execution time among the
four solution in executing the same task are not negligible and therefore worth of investigation.
The data collected in Figs. 21 and 22 show that the best choice in terms of motion primitive can
achieve a speed-up up to 20.20 % and energy reduction up to 29.63 %. The results also highlights,
for the robot and for the tasks under consideration, a general tradeoff between motion smoothness
and energy consumption.
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6.1 Motor power limitation

A meaningful extension of the optimization problem in Eq. 38 is the inclusion of additional
constraints, since that formulation refers only to kinematic quantities. Additional constraints can
be useful when it is needed to cope with other physical limitations of the manipulator.

One possible scenario that requires an extension of the aforementioned optimization framework
is the limitation of the electric power at the motor drives. In particular, it might be convenient
to constrain the the maximum values of the electric power which can flow from the drive to the
motor or, when regeneration happens, in the opposite direction. In non-regenerative systems it
might be needed also to account for the maximum power dissipation on the braking resistors [9].

The numerical solution to the optimization problem when augmented with electric power limi-
tations requires to evaluate the extreme values of current in each k-th segment and for each joint of
the robot for each iteration of the numerical solver. The most straightforward method to evaluate
the extreme values of current is to evaluate the voltage-current product for a sufficiently large
number of time samples in the range [0, Tk], for each segment and each robot axis using Eqs. 1
and 2. Such a method has the disadvantage of requiring an unnecessary amount of computing
resources, since it would be better to evaluate the magnitude of the electric power only where a
local minimum or maximum might be located.

To detect where a minimum or a maximum value of the electric power can be located, a slight
reformulation of Eqs. 20,21,28,35 is useful. In particular, the terms W2,k in Eq. 28 and W3,k in
Eq. 35 can be merged into the single one:

W2,k +W3,k = Tc

(

2
R

k2t
(Jq̈k(t) + Text + fv q̇k(t)) +

kb
kt

)

sgn (q̇k(t)) (39)

Equation (39) takes a polynomial form, owing to the polynomial formulation adopted to de-
scribe joint speed q̇k(t) and joint acceleration q̈k(t), that for the intermediate segments of a 434
trajectory can be written as:

W2,k +W3,k = ±

2
∑

i=0

w23
k,it

i (40)

in which the term sgn(q̇(t)) is replaced by the ′±′ symbol. By including the electric power
term W1,k too, according to Eqs. 20, 21 and 40, the total electric power drawn by one motor
during the k-th segment of the trajectory is:

Wk(t) =

4
∑

i=0

wi,kt
i ±

2
∑

i=0

w23
i,kt

i (41)

The latter is equivalent to two fourth-degree polynomial equations, one obtained with the
’plus’ and the other with the ’minus’ according to the sign of the joint speed at time t. The
possible locations of the maxima and minima of the power Wk(t) are easily found by identifying
the zeros of its time derivative Ẇk, which are readily available using closed-form formulas for
lower-degree motion primitives or the aforementioned matrix companion method. Once the time
instant for each possible maximum or minimum is found, the actual sign of the joint speed can be
evaluated and the corresponding numerical value of Wk(t) can therefore be discarded or kept for
the computation of the extremal values of the electric power.

Extensive tests have shown that the suggested method of computing the extremal values of
the current has a very limited impact on the required computing effort, given the limited amount
of additional computation introduced by the proposed method.

The effectiveness of the method is shown in Fig. 23, which reports the electric power absorbed
by each motor for the pick & place trajectory and the 434 planning method. The largest amount
of electric is delivered to the Z axis actuator, which has to counteract the gravity force while
producing the initial ’lifting’ motion. The power limit is set, for all three motors, to ±120 W.
The electric power profiles show that the electric power that is provided by the each drive circuit
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Figure 23: Pick & place task: motor power with bounded motor electric power

to the corresponding motor is precisely limited to the prescribed bound. The results take into
consideration a symmetrical power limitation to each individual motor, but the same method can
be, as a matter of example, easily extended to take into account different or additional constraints,
such as bounds on the total electric power delivered to the whole robot or other generic bounds
that might be non-symmetric.

7 Conclusions

In this work, a novel trajectory planning algorithm for industrial robots is proposed, aimed at
minimizing the energy consumption of tasks defined as a set of via-points. The method can take
into consideration constraints on speed, acceleration and jerk for each joint of the robot, as well
as limits on the electric power capabilities of the electric drives. The method is suitable for single
and multiple joint robots with uncoupled dynamics, such as gantry cranes or Cartesian robots,
driven by regenerative drives. An optimization problem is defined and solved by computing the
closed-form solutions of electric energy and power for the 434, 445, 545 and 5455 trajectories. The
availability of a closed-form analytic expression of energy consumption allows to solve the opti-
mization problem with algebraic equations without the need to integrate the differential dynamic
equations of motion of the robot, thus ensuring maximum computational efficiency. The results
indicate that, for the benchmark robot and the tasks under consideration, the use of lower-degree
motion profiles are generally the best choice in term of energy saving. In some cases however a
smoother trajectory can be preferred to limit the peak values of the joint acceleration, as detected
for the pick & place test-case analyzed in this work.
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Appendix: Polynomial coefficients of electric power

First segment of the ’434’ trajectory: polynomial coefficients w
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Last segment of the ’434’ trajectory: polynomial coefficients w
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The coefficients w434

i,N−1 can be used also for a generic fourth-degree segment, as in the 445, 545 or
5455 trajectory.
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Fifth-degree segments:
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