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Abstract

In this paper a task-dependent energetic analysis of
robotic manipulators is presented. The proposed ap-
proach includes a novel performance index, which re-
lates the energy consumption of a robotic manipula-
tor to its inertia ellipsoid. To validate the method,
the dynamic and electro-mechanic models of a 3-
DOF SCARA robot are implemented and the influ-
ence of the location of a predefined point-to-point task
(such as a pick-and-place operation) within the robot
workspace is considered. The task-dependent analy-
sis provides energy consumption maps that are com-
pared with the prediction of the theoretical formula-
tion based on the proposed Trajectory Energy Index
(TEI), which can be used to optimally locate the task
to obtain minimal energy consumption without having
to compute it through extensive dynamic simulations.
Results show the effectiveness of the method and the
good agreement between the TEI and the effective en-
ergy consumption within the whole workspace of the
robot for several trajectories.

1 Introduction

Nowadays, industry is facing the challenge of imple-
menting cost-effective and energy-efficient processes.
These requirements are driven not only by economic
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considerations, but also by environmental politics,
such as those set by the European Union [1]. The
manufacturing industry is already responsible for a
large percentage of the overall global energy con-
sumption [2], and such a figure is expected to increase
according to the foreseen growing of the worldwide
demand of industrial robots [3]. In this scenario, en-
gineers and researchers are investigating several solu-
tions for energy efficiency, which allow robots to work
with lower production costs without affecting produc-
tivity. An extensive review of the several methods
that can contribute to energy saving in robotic and
mechatronic devices is presented in [4].

Strategies to increase the energetic performance
include the design of lightweight mechanical com-
ponents and links [5], the adoption of regenerative
drives [6], and the exploitation of the system nat-
ural dynamics [7, 8]. Adding springs and reaction
wheels can sensibly reduce the power consumption
of robots [9, 10] [11] associated with a simple task.
However, this kind of modifications can be trouble-
some in industrial practice. Further approaches to
decrease the energy or torque required by robots ac-
tuators include the re-scheduling of operations, the
optimization of motion time, and the planning of op-
timal paths and trajectories [12]. For example, in [13]
a trajectory planning approach for the energy saving
in a redundant robotic cell is presented, whereas in
[14] the effects of different motion profiles for a sin-
gle degree-of-freedom mechanical system on its over-
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all energy consumption are taken into account using
analytic methods. Other examples can be found in
[15], where time and energy-optimal trajectories are
analyzed for the pick-and-place motion of a 6-DOF
robot, and in [16], where simple motion trajectories
are employed for the energy saving in industrial ma-
chines.

The behavior of industrial manipulators can be es-
timated by adopting local and global performance
measures and indexes. The study of these measures
is motivated by the fact that local performance in-
dexes can be used to define the relationship between
robot and task definition. Furthermore, local perfor-
mance indexes can provide guiding principles in the
relative positioning of robot and task, as well as an
analysis of the areas of the workspace in which the
robot performance are maximized [17]. Early exam-
ples of performance indexes are based on the con-
cept of generalized inertia ellipsoid [18], introduced
by Asada in 1984 to study the mass properties and
dynamic behavior of robotic arms, and on the ma-
nipulability index [19], proposed by Yoshikawa as a
kinematic performance measure. Furthermore, in [20]
the authors investigated dexterity measures of a ma-
nipulator based on its Jacobian matrix. Relevant ex-
amples of performance indexes can be found in [21],
where measures for the quantification of dexterity of
kinematically redundant manipulators are proposed,
and in [22], where performance indexes are applied
to a SCARA robot and graphically evaluated.

Dexterity and other Jacobian-based performance
metrics are however affected by the dimensional in-
consistency that arises whenever the robot has both
rotational and translational degrees of freedom. One
example is [23], in which a dimensionally homoge-
neous Jacobian matrix is used to design the optimal
configuration of parallel manipulators for the best
dexterity, thus proving a solution to the unit incon-
sistency of standard methods. The authors in [24]
proposed numerical formulation of the velocity equa-
tion for any topology of spatial mechanism, again
using a dimensionless Jacobian matrix, whereas in
[25] dimensionless Jacobian matrices are formulated
for the dexterity analysis of parallel manipulators re-
gardless of the number and type of degrees of free-
dom of the mechanism. Furthermore, in [26] a per-

formance index given by the inverse of the condition
number is used to measure the motion performance of
a 2-DOF spherical wrist. In [27] Jacobian, manipula-
bility, condition number, and accuracy are analyzed
and applied to parallel robots, exposing the limits of
Jacobian-based performance indexes for this kind of
robots.

Further performance indexes are examined for
the optimal design of redundantly actuated parallel
robots in [28], cable-driven robots in [29, 30], and for
the optimal choice of large workspace robots in [31].

Several other studies are worth of mention for hav-
ing analyzed some task-related rather than local (i.e.
punctual) performance metric of a manipulator In
[32] the authors derived a relationship between joint
velocity and end-effector acceleration, and through
case studies demonstrated that velocity has a com-
plex, non-negligible effect on manipulability. In [33]
the inertia matching ellipsoid is proposed as a new
index of dynamic performance for serial-link manip-
ulator, and its effectiveness is demonstrated experi-
mentally through the application to a pick-and-place
operation. In [34] the authors investigated the re-
lation between mechanical power and manipulability
as a key element of the manipulator analysis, estab-
lishing a performance index to compute the optimal
task positioning. Another example of task-dependent
analysis can be found in [35], where a performance in-
dex is introduced to optimize the location of a pick-
and-place task for a 4-DOF industrial parallel robot.
The work [36] is also worth of mention, since it pro-
vides an in-depth analysis of the relationship between
energy consumption, shaking force magnitude, peak
motor torque and location of the robotic task to be
executed for the case of an Orthoglide robot. The
work concludes that the optimal location is in prox-
imity of the isotropic configuration, but a general
rule is unavailable for complicated tasks or irregular
workspaces.

As seen so far, robot performance indexes are
usually related to dexterity, manipulability, force or
speed exertion capability. To the best of the author’s
knowledge, no performance indexes focused on en-
ergy consumption can be found in the present litera-
ture. In this paper a task-dependent energetic analy-
sis of industrial manipulators based on the concept
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of inertia ellipsoid is provided, extending the pre-
liminary analysis published in [37]. The effect of
path and trajectory planning design on the overall
energy consumption of a robot are evaluated for a
given operation, such as a common pick-and-place
task defined by a point-to-point motion in the joint
space or in the operational space of the robot. A
3-DOF SCARA robot is considered and its dynamic
and electro-mechanic models are developed. The in-
fluence of the location of the task within the robot
workspace and the choice of the motion law are evalu-
ated, providing an energy consumption map for each
considered trajectory. The energy consumption maps
are then compared with the prediction of the theo-
retical formulation based on the inertia ellipsoid ac-
cording to the novel performance index. The main
contributions of this work are: (a) the definition of a
novel performance index, named Trajectory Energy
Index (TEI), which relates the energy consumption of
the manipulator to the inertia ellipsoid, and (b) the
evaluation of a method based on inertia ellipsoid to
measure the energetic performance of industrial ma-
nipulators with respect to a specific point-to-point
motion. Despite there is a link between the proposed
index and other concepts, such as the manipulability
ellipsoid, the definition of the TEI remains a novel
contribution compared to existing concepts and tech-
niques already published in the literature.

The rest of the paper is organized as follows: in
Section 2 the theoretical formulation of the proposed
approach based on inertia ellipsoid is described. In
Section 3 the dynamic and electro-mechanic robot
models are presented, which are the used in Section 4
to provide an evaluation of the agreement between
the prediction of the proposed performance indexes
and the estimated energy consumption. The conclu-
sions are given in Section 5.

2 Inertia ellipsoid and ener-
getic performance measure

In this section, the theoretical formulation of the pro-
posed performance index, based on the concept of in-
ertia ellipsoid, is presented. The first part of the sec-

tion deals with the geometric features that relate the
proposed index with the energy consumption. Then,
the analytical expression of this index is derived.

2.1 Geometric derivation

The kinetic energy K of a robotic system composed
of n rigid links and n motors can be represented as
a function of the n−dimensional joint velocity vector
q̇ and of the (n× n) inertia matrix M, according to
the following equation:

K(q, q̇) =
1

2
q̇TM(q)q̇ (1)

The relationship between the energy associated
with the execution of a task and the parameters that
identify the positioning of that task in the operational
space, which is the focus of [37], can be analyzed oth-
erwise by representing the kinetic energy as a func-
tion of the end-effector pose p and velocity ṗ in the
operational space. In order to do this, it is convenient
to exploit the concept of generalized inertia tensor
presented in [18]: to do this, the expression of the
kinetic energy in (1) can be rewritten in terms of the
end-effector velocity, ṗ rather than on the joint ve-
locity vector q̇, using the inverse differential equation
q̇ = J−1ṗ:

K =
1

2
ṗTJ−TMJ−1ṗ (2)

where the (6 × 1) vector p represents the pose of
the end-effector in the operational space and J is the
(6 × n) geometric Jacobian matrix of the manipula-
tor. Thus, a new inertia matrix can be define in the
operative space as:

G = J−TMJ−1 (3)

Since by definition the kinetic energy is a positive de-
fined function, G is a positive definite matrix and it
depends only on the instantaneous robotic configura-
tion (i.e., the joint pose vector q).

Now, the case of a generic 2-DOF robot that might
comprise both revolute and prismatic joints is consid-
ered to provide a simple example, that has also the
benefit of allowing a simple and straightforward vi-
sual representation of the results. The formulation

3

This is a pre-print of the article: F. Vidussi, P. Boscariol, L. Scalera, A. Gasparetto
Local and trajectory-based indexes for task-related energetic performance optimization of robotic manipulators

Journal of Mechanisms and Robotics, 2021, 13.2: 021018 https://doi.org/10.1115/1.4049972



is however general, and what follows applies, with
the obvious modifications, to any robot. Referring
again to a 2-DOF robot the kinetic energy can be
represented as a quadratic surface in a 3-D Euclidean
space and the isoenergetic curves correspond to bi-
dimensional ellipsoids in the plane K = K, according
to:

K =
1

2
ṗTGṗ = constant (4)
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Figure 1: Kinetic energy surface (a) and inertia ellip-
soid (b). The inverse of distance between the center
P and a generic point E on the ellipsoid can be inter-
preted as a measure of the inertia of the robot when
moving in the direction identified by the segment PE.

For each energetic level K, the two principal axes
of the ellipsoid can be obtained by solving the eigen-
value problem for matrix G, since the length of the
major axis a and of the minor axis b are related to
the eigenvalues λ1 and λ2 of G, as a = 1/

√
λ1 and

b = 1/
√
λ2, and the directions of these axes are iden-

tified by the eigenvectors v1 and v2 of G. These

curves are also known as inertia ellipsoids. Figure
1(a) represents the energy as a generic quadratic sur-
face, and the projection of the isoenergy curves on the
velocity plane as ellipsoids. The center P of these el-
lipsoids corresponds to the instantaneous position of
the robot end-effector. Let us consider two velocity
vectors ṗA and ṗB , parallel to the principal axes of
the contour ellipses in Fig. 1(b). These vectors have
the same norm but different directions, chosen so that
the kinetic energy associated with ṗA is the largest
one and the one associated with ṗB is the smallest
one, as shown by the green curve on the surface. The
corresponding kinetic energy values KA and KB can
be expressed as:

KA = hA(p, ṗ) ||ṗA||2 > KB = hB(p, ṗ) ||ṗB ||2 (5)

where hA and hB are the scalar values of the gener-
alized moment of inertia of the robot moving along
ṗA and ṗB , respectively. The generalized moment of
inertia h depends on the robot configuration and on
its velocity, and, therefore, on the direction of mo-
tion. Since ||ṗB || = ||ṗA||, it must be hA < hB .
For the generic velocity vector ṗ with ||ṗ|| = ||ṗA||,
the generalized moment of inertia h can be found
as h (p, ṗ) = K/||ṗA||2, and hB ≤ h ≤ hA, being
KB ≤ K ≤ KA.

The energetic anisotropy described above can also
be interpreted as suggested by the graphic represen-
tation reported in Fig. 1(b). In the figure, the in-
tersections between the velocity vectors and the in-
nermost ellipsoid define three points, A, B, E and
three segments, PA, PB, PE. When the motion is
aligned with the major axis of the ellipsoid, i.e., PB,
the energy and the inertia take the minimum values,
whereas when the motion is performed along the el-
lipsoid minor axis, i.e., PA, the energy and the iner-
tia take the largest values. Therefore, the generalized
inertia moment is proportional to the inverse of the
distance between the end-effector position P and the
generic point E that identifies the direction of mo-
tion on the ellipsoid: h ∝ ||P − E|| −1. Accordingly,
a Local Energy Index (LEI) can be defined as:

LEI(q, q̇) =
1

||P − E||
(6)

The minimization of such index ensures that the
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direction of the end-effector motion occurs with the
minimum generalized moment of inertia. The index
allows to identify the most energy-efficient direction
of the motion for each position of the end-effector in
the plane. The LEI only depends on the joint con-
figuration and on the direction of the motion, and it
corresponds to the square of the eigenvalues of matrix
G, when the instantaneous velocity vector is aligned
with the principal axes of the ellipsoid. The LEI is
a local index, i.e., it is a function of the joint coordi-
nates q. However, the aim of this work is to define
an index that measures the robot performance along
a point-to-point trajectory q̇(t) with t ∈ [t0, tf ]. To
do so, a different performance index is defined as the
Trajectory Energy Index (TEI):

TEI =
1

tf − t0

tf∫
t0

LEI(t)dt =

=
1

tf − t0

tf∫
t0

1

||P (t)− E(t)||
dt (7)

Since this index is proportional to the energy, being
the mean value of the LEI, it can be used to relate a
desired trajectory with the corresponding energy re-
quired by the manipulator. In this way, a minimiza-
tion of the TEI can be used in the design of energy-
efficient point-to-point motions. It must be pointed
out that this relationship is valid without any mod-
ification to the proposed formulation in all cases in
which the effects of gravity on energy consumption
is independent of the robot motion, as in the case of
null or homogeneous effects of gravity load.

2.2 Analytic expression for planar
motion

In this section, the analytical expression of the first
proposed index is derived and analyzed, consider-
ing a generic 2-DOF planar manipulator. Figure 2
shows that the inertia ellipsoid is centered on point
P , which belongs to the trajectory s. The refer-
ence frame {XP , Y P } has the same orientation of
the robot base reference frame. The line γ is tangent

r

γ

Figure 2: Inertia ellipsoid corresponding to the point
P of the trajectory s for a generic planar manipulator
with 2-DOF. The vector g has the same direction θ of
the movement in the point P and module equal to the
inverse of the energetic performance index proposed.

to the trajectory s at point P , and defines the in-
stantaneous direction θ of the motion. As previously
explained, the directions of the principal axes of the
ellipsoid are identified by the eigenvectors v1 and v2

of G, and the corresponding dimensions a, b are re-
lated to the eigenvalues λ1 and λ2 of G. The angle φ
represents the orientation of the ellipsoid major axis
and can be evaluated using the first eigenvector v1

as φ = arctan (v1,y/v1,x).

The intersection point E between the ellipsoid and
the tangent line γ defines the vector r, which has
the same direction of the motion θ and module equal
to the length of segment PE. This length can be
derived from the projections of the point E on the
principal axes of the ellipsoid, i.e., E1 and E2, as
||g|| =

√
E2

1 + E2
2 . Then, according to Eq. (6), the

LEI is equal to the inverse of the module of r and its
two components are related to the axis length a, b,
and to the angle β as follows:{

E1 = a cosβ
E2 = b sinβ

(8)

In order to evaluate β, the direction α of the vector
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Figure 3: The Local Energy Index as a function of
the direction θ according to Eq. (11), when a = 20,
b = 2 and φ = π/6. The minimum is obtained when
θ = φ, i.e., when the movement is aligned with the
ellipsoid major axis.

r in the ellipsoid reference frame can be exploited: θ = φ+ α

α = arctan

(
E2

E1

)
= arctan

(
b

a
tanβ

)
(9)

leading to:

β = arctan
(a
b

tan(θ − φ)
)

(10)

Finally, the LEI can be written as:

LEI =

[
a2 cos2

(
arctan

(a
b

tan(θ − φ)
))

+

b2 sin2
(

arctan
(a
b

tan(θ − φ)
))]−1/2

(11)

One can notice that, as long as the position of the
end-effector in the workspace is chosen, the parame-
ters a, b and φ are unequivocally identified, since the
matrix G depends on the robot configuration only.
Then, the only degree of freedom is the direction of
the movement θ. Furthermore, the minimum of the
LEI is found for θ = φ, i.e., the movement is aligned
with the ellipsoid major axis, and min(LEI) = 1/a.
Figure 3 shows the LEI as a function of θ for a = 20,

Figure 4: SCARA robot: kinematic definitions and
mass distribution.

b = 2 and φ = π/6. This applies for the given val-
ues of q and q̇, but it can be seen that the minimum
value of the TEI, which identifies the approximation
of the energetic optimal trajectory, can be obtained
by minimizing the mean value of the LEI.

3 Robot model

In this section the model of the robot used as the
test-bench is presented: first its dynamic model of
the robot and then the electro-mechanical model of
the actuators are explained. Finally, the power losses
model is define by taking into account all the relevant
losses.

3.1 Dynamic model

A 3-DOF SCARA robot designed according to the
common RRP architecture is shown in Fig. 4. Its
geometric Jacobian matrix J can be computed as:

J =


−a1s1 − a2s12 −a2s12 0
a1c1 + a2c12 a2c12 0

0 0 −1
0 0 0
0 0 0
1 1 0

 (12)

where s1 = sin θ1, c1 = cos θ1, s12 = sin(θ1 + θ2),
c12 = cos(θ1 + θ2), ai is the length of the i-th link,
whereas θ1, θ2 are the first two joints variables.
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In order to provide a realistic evaluation of the en-
ergy consumption and the corresponding energetic
performance index, the inverse dynamic problem
must be solved. For this purpose, once the geo-
metric and mass properties of arms and motors are
defined, given the vectors of position q, velocity q̇
and acceleration q̈ of the joints, it is possible to ex-
ploit the Lagrangian formalism to compute the joint
torque vector τ . First of all, the kinetic energy K
and the potential energy U are use to calculate the
Lagrangian function L = K−U of the system. Then,
the joint torque vector τ is obtained through the La-
grange equation:

d

dt

∂L
∂q̇
− ∂L
∂q

= τ (q, q̇, q̈, t) (13)

The kinetic energy K is computed as in Eq. (1), and
the inertia matrix M can be represented as follows:

M(q) =

n∑
i=1

(
mliJ

(li)T
P J

(li)
P + J

(li)T
O IliJ

(li)
O

+mmi
J
(mi)T
P J

(mi)
P + J

(mi)T
O Imi

J
(mi)
O

)
(14)

mli is the mass of the link i, Ili is the inertia ten-
sor relative to the center of mass of link i, mmi is
the mass of the motor i, Imi is the inertia tensor of
the rotor i, whereas JP and JO are the position and
orientation geometric Jacobian matrices respectively,
for each link li and motor mi. By using a lumped
mass model parameters, the inertia moment of link i
referred to the z axis of the i-th frame can be calcu-
lated as Ili = 1/2mli l

2
i . The values of motors inertia

moment with respect to the rotor axis are reported
in Tab. 1. The potential Energy U can be evaluated
as:

U = g

n∑
i=1

(mlipz,li +mmi
pz,mi

) (15)

where g is the gravity constant, and pz,li and pz,mi

are the height of link i and motor i referred to the
base reference frame, respectively. Accordingly, for
the 3-DOF SCARA under study, the only meaning-
ful contribution to the potential energy is due to the
third link, since the motion of the last joint is orthog-
onal to the other motions.

By applying Eq. (13) to the expression of kinetic
and potential energy just explained, the joint torques
can be evaluated. In order to consider also the non-
conservative forces, viscous friction force Fvq̇ and
Coulomb friction force fc = fc sgn(q̇) are added to
the conservative torque vector τ . Then, the dynam-
ics of the robot can be expressed as:

τ = M(q)q̈+C(q, q̇)q̇+Fvq̇+fcsgn(q̇)+g(q) (16)

where M is the inertia matrix of Eq. (14) , C is the
matrix of Coriolis and centripetal non-linear forces:

C =

 ε θ̇2 ε
(
θ̇1 + θ̇2

)
0

−ε θ̇1 0 0
0 0 0

 (17)

where ε = −a1s2(l2ml2 + a2ml3 + h2mm3), and g =
[0 0 − gml3 ]T is the gravitational force vector.

3.2 Electro-mechanic model

In this section the electro-mechanical model of the
robot actuators is presented. This model aims at
calculating the voltages and the currents that must be
provided to the motors to obtain the desired velocity
q̇m and torque τm. Currents and voltages are used
to computed the energy required to perform a motion
task.

First of all, the joint velocity and the joint torque
profiles given by the trajectory planning algorithm
and the by inverse dynamics in Eq. (16), are reduced
to the motor axis taking into account the gearboxes.
Assuming that harmonic drives are used for the two
revolute joints, and a screw ball is use to covert the
rotational motion of the third motor into a linear
motion, velocity and torque values at the motor side
can be expressed as:{

q̇m = Krq̇

τm = ηr K
−1
r τ

(18)

where Kr is the diagonal matrix of the gear reduction
ratios kri , and ηr is the diagonal matrix of the gear
efficiencies ηri .

It is assumed that the robot is actuated by three
surface permanent magnet synchronous motors. The
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electric model of each motor consists of three phase
voltage equations that, under the hypothesis of linear
and isotropic system, can be expressed as follows:

ua = Ria + L
dia
dt

+
dλa,mg

dt

ub = Rib + L
dib
dt

+
dλb,mg

dt

uc = Ric + L
dic
dt

+
dλc,mg

dt

(19)

where ux and ix are the voltage and the current on
the phase x, R and L are the resistance and the induc-
tance of each stator winding, and λx,mg is the flux due
to the permanent magnet and linked by the x wind-
ing; deriving this flux in time gives the back EMF on
the relative winding. By using the space vector repre-
sentation and by applying Clarke and Park transfor-
mations [38], it is possible to rewrite the three-phase
model of Eq. (19) as the following dq bi-phase model:

ud = Rid + L
did
dt
− ppq̇miq

uq = Riq + L
diq
dt

+ ppq̇mid + ppq̇mΛmg

(20)

where Λmg is the residual induction of the magnet
and pp is the number of pole pairs. Now it is possible
to apply an energy balance procedure in order to find
the relation between motor torque and current:

τm =
3

2
ppΛmgiq = ktiq (21)

which shows that the torque is proportional to the
current iq by the torque constant kt = 3

2ppΛmg. Also
on the basis of this last consideration, Eq. (20) can
be further simplified. As a matter of fact, according
to the space vector representation, the current idrive
that must be provided by the inverter can be written

as: |idrive| =
√
i2d + i2q. This means that in order to

match the maximum torque per ampere condition,
the id current must be zero. In addition, since the
electrical dynamics is often significantly faster with
respect to the mechanical dynamics, it is conceivable
to neglect current transients, i.e., the Ldi/dt terms.
Therefore, assuming that all these conditions are met

and accounting for all actuators, the electro-mechanic
model can be written as:{

u = Ri + Keq̇m

τm = Kti
(22)

where u and i are the vector of q-axes voltage and
current, R is the diagonal matrix of the winding re-
sistances, Ke is the diagonal matrix of the back EMF
constants kei = ppi

Λmgi and Kt is the diagonal ma-
trix of torque constants.

3.3 Power losses model

The sources of the main power losses in industrial
robots are now discussed. According to [39, 40], the
main type of losses can be categorized as follows.
(1) Mechanical losses include viscous friction
losses and Coulomb friction losses that are already
included in the dynamic model of the robot.
(2) Motor losses encompass stator and rotor, iron
and stray load losses. Stator and rotor losses, also
known as i2 losses, describe the joule energy dissi-
pated by the motor winding resistance R, and are in-
cluded in the electrical model of the actuators. Iron
losses, due to magnetization and demagnetization of
the windings, are heavily influenced by magnetic in-
duction and its frequency of variation, and are typ-
ically very difficult to compute exactly. A common
simplified model is based on the consideration that
these losses vary with the motor speed and, there-
fore, can be interpreted as viscous losses, which can
be included in the dynamic model by properly in-
creasing the viscous friction coefficient. Stray load
losses are related to flux leakage that occurs through
the windings when the motor is operating under its
specific load. These losses depend on the square value
of the current and can be included in the i2 losses by
fictitiously increasing the winding resistance R.
(3) Motor drive losses are mainly composed of in-
verter, rectifier and DC-bus losses. Inverter losses,
are resistive losses due to the inverter transistors
switching frequency mainly, and therefore can be in-
cluded in the i2 losses category, as for the stray load
losses. Rectifier losses and DC-bus losses are hard to
model without a proper knowledge of their detailed
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electric schematics. Therefore, one possible choice is
to collect all the motor drive losses within the effi-
ciency ηd. The latter might be either represented as
a constant value, or as a function of the driver duty
cycle [41].

3.4 Energy consumption estimation

Once the voltage and current profiles of Eq. (22)
are determined, given the parameters in Tab. 1, the
total energy consumption Etot can be computed as
the time integral of the three-phase electric power
drawn by the robot Pd,tot(t):

Etot =

∫ tf

ti

Pd,tot(t) dt =

∫ tf

ti

3

2ηd
u(t)T i(t) dt =

3

2ηd

(∫ tf

ti

RT i(t)R dt+

∫ tf

ti

q̇T
m(t)KeK

−1
t τm(t) dt

)
(23)

The first term of the integral represents the Joule
energy and the second accounts for the total electro-
mechanic energy.

4 Results

The energetic model explained in the previous section
is used to estimate the energy consumption of the
robot in relation to the choice of the point-to-point
motion law and to the positioning of the task within
the robot workspace. For each motion profile, by
varying the task parameters defined in the Cartesian
space (as described below), the corresponding energy
absorption is computed and the results are collected
into energy maps. Following the same procedure, the
energetic performance index is computed to create
TEI maps that are compared with the energy values
in order to evaluate the effectiveness of the proposed
index.

4.1 Task-dependent energetic analysis

The task considered for the task-dependent analysis
is the translation of the robot end-effector from a
starting point Pi to a final point Pf , as performed in

Δ

Figure 5: Path parameterization.

a pick-and-place operation. The path that connects
the two points depends on the adopted motion law.
Figure 5 shows the parameterization that is chosen
to represent such a task on the {X,Y } plane, where
the origin of the reference system corresponds to the
position of robot base. Given a fixed execution time
and the total displacement ∆, three parameters are
left free: the polar coordinates (d, φ) of the mid-point
of the segment PiPf that represents the task, and its
orientation θ with respect to the X axis. Though,
due to the symmetry of the SCARA configuration
around the Z axis, variations of φ do not affect energy
absorption, as long as the task is performed away
from the limits of the first joint. This allows to set
φ = 0. Hence, the task is unequivocally identified by
the two parameters θ and d. According to the limits
of the workspace, the orientation θ ranges from 0 rad
to π rad, the distance d varies from 0.1 m to 0.7 m,
whereas the displacement ∆ is set to 0.28 m. The
execution time is set to 0.8 s for all the tests.

As far as the choice of the motion law is con-
cerned, four well-known point-to-point trajectories
are taken into account [42], i.e., the third and the
fifth-order polynomial profile in the joint space, and
the third and the fifth-order polynomial profile de-
fined in the operational space, all designed for rest-
to-rest motion. In the second case, the motion of the
end-effector is forced to follow a straight line, since
all the via points are imposed on the {X,Y } plane.
On the other hand, planning in the joint space al-
lows the robot end-effector to perform arcs instead

9

This is a pre-print of the article: F. Vidussi, P. Boscariol, L. Scalera, A. Gasparetto
Local and trajectory-based indexes for task-related energetic performance optimization of robotic manipulators

Journal of Mechanisms and Robotics, 2021, 13.2: 021018 https://doi.org/10.1115/1.4049972



Table 1: Dynamic properties of the SCARA robot.
Parameter Joint 1 Joint 2 Joint 3

ai 0.35 m 0.35 m -
mli 9 kg 8 kg 1 kg
kri 1/80 1/50 1/50
ηri 0.7 0.7 0.8
mmi

7.1 kg 6.3 kg 2.5 kg
Imi

5 · 10−4 kgm2 4 · 10−4 kgm2 1 · 10−4 kgm2

fv 8 · 10−4 Nms/rad 7 · 10−4 Nms/rad 5 · 10−4 Nms/rad
fs 2 · 10−4 Nm 2 · 10−4 Nm 2 · 10−4 Nm
Ri 0.39 Ω 0.39 Ω 1.67 Ω
kei 0.16 V s/rad 0.16 V s/rad 0.12 V s/rad
kti 0.28 Nm/A 0.28 Nm/A 0.21 Nm/A
ηd 0.9 0.9 0.9

of straight lines. This choice reflects the two options
offered by virtually all robot manufacturers. The en-
ergy maps obtained according to the procedure pre-
viously described are shown in Fig. 6. Each map
corresponds to one motion profile and the energy, ex-
pressed in Joule, is represented as a function of pa-
rameters (θ, d). The black lines indicate the isoener-
getic curves in the (θ, d) plane. Figures 6(a),(b) show
the results of motion tasks defined in the joint space,
whereas Figs. 6(c),(d) refer to operative space plan-
ning. The location of the minimum for each maps is
highlighted by a pink circle: their location in Fig. 6
suggest that, for the robot under investigation, high
values of distance d and values of θ close to 2 rad
are to be preferred whenever the reduction of the en-
ergy required to perform a rest-to-rest motion task is
sought.

The comparison between Figs. 6(a),(b) and
Figs. 6(c),(d) highlights that the size of the unfeasi-
ble area in the joint space map is smaller than in the
case of operational space maps. This is due to the
fact that, given two points in the robot workspace,
a straight line that connects these two points and
goes across the internal workspace boundaries is not
feasible. On the other hand, an arc that connects
the two points without violating the internal bound-
aries always exists. Additionally, despite the larger
length of the end-effector path, the joint space en-
ergy maps (Figs. 6(a),(b)) present slightly lower en-

ergy levels than the corresponding operational space
maps (Figs. 6(c),(d)), and as expected [13, 43] prim-
itives defined by lower degree polynomials are more
energetically efficient. Within each map, i.e., for any
choice of the motion profile, the energy distribution
varies quite heavily. Looking at Fig. 6(a) highlights
that by changing the location of the task the energy
required to provide a single point-to-point motion can
vary from 38 J to over 50 J . Similar trends applies
to the other maps. Hence, as in [37], it can be in-
ferred that the location of the task within the robot
workspace has a heavier impact on the energy con-
sumption then the choice of the motion law itself.

The relation between task-positioning and energy
is further highlighted in Fig. 7, which refers to the
data already presented in Fig. 6(c). In this figure
each arrow represents a motion task that connects
its initial and final point within the robot workspace.
The red arrows represent the optimal orientation θ
of the path for 15 evenly spaced values of distance d
from the base (for values from 0.33 m to 0.7 m). The
blue arrow represents the overall optimal solution
that corresponds to θ = 1.885 rad, d = 0.57 m. This
graphic representation suggests that, from the ener-
getic point of view, the radial motion is the most effi-
cient when operating close to the robot base, whereas
a tangential motion is to be preferred when operat-
ing towards the external boundaries of the workspace.
Similar considerations apply to the other three cases
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Figure 6: Energy consumption maps: poly3 (a) and poly5 (b) joint space planning, poly3 (c) and poly5 (d)
operative space planning.

under investigation.

4.2 Energetic performance index eval-
uation

Finally, the evaluation of the Trajectory Energy In-
dex is performed by computing the maps for the same
tasks already analyzed and by comparing the results
with the corresponding energy maps. Figure 8 shows
the TEI function maps for the four previously an-
alyzed motion laws. Red color is associated with
higher values of TEI, blue color indicates lower values
of TEI. The small pink circle represents the absolute
minimum value of the TEI within each map. The
first evidence, according to the direct comparison be-
tween Fig. 6 and Fig. 8, is the almost perfect overlap

between the pink circles, which is evident when com-
paring each energy map with the corresponding TEI
map. This feature suggests that the TEI can foreseen
quite precisely the task associated with minimum en-
ergy expenditure.

Each energy map and the corresponding TEI map
also show similar gradients, as can be seen, for ex-
ample, by comparing Fig. 6(a) with Fig. 8(a). This
implies that the TEI can be used to foreseen very
well the energy variation in the (θ, d) plane, but it
cannot be used alone to make a quantitative estima-
tion of this energy. As consequence, the proposed
index represents a good objective function to be used
in any task optimization process, where the energy
consumption has to be minimized. Opting for the
choice of the TEI as the cost function to be mini-
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Figure 7: Optimal path orientation θ by varying the
distance d from the base (for values from 0.33 m to
0.7 m) for the 3rd order polynomial profile in the
operational space: the overall best solution is shown
in blue color.

mized when planning an energy optimal motion task
allows to avoid the computational burden imposed by
the explicit solution of the inverse dynamics model
and of the related computation of the current and
voltages profiles. Therefore Eq. (14)-(18), (22) and
(23) are not needed, and Eq. (3) and (7) can suf-
fice. This statement is also supported by the data
collected in Tab. 2, which reports the results of the
energy minimization and of the TEI minimization.
As far as the two tasks defined in the joint space are
concerned, the two minima overlap perfectly. i.e., the
minimization of the proposed energetic index brings
the very same results obtained by minimizing the en-
ergy required to run the robot. When referring to mo-
tion tasks defined in the operative space, the two op-
tima are located in slightly different locations of the
(θ, d) plane, but the corresponding energy consump-
tion vary at most by 0.38%. Such a small percentage
represents a discrepancy that, however, is expected
to be outscored by the uncertainties of the energy
estimation model used here.

The relationship between the orientation of inertia
ellipsoid with respect to the direction of motion and

the corresponding energy consumption is clearly vis-
ible in Fig. 9. The sampled values of the end-effector
path that correspond to the maximum (on the left)
and to the minimum (on the right) energy consump-
tion are represented by the red crosses, whereas the
red circle indicates the robot base. The inertia ellip-
soid are shown in blue, whereas the green arrows are
the samples of r vector, described in Fig. 2. Dashed
lines indicate the workspace limits. This figure cor-
roborates the hypothesis that the more the trajectory
is aligned to the ellipsoids major axis (i.e., the small-
est the LEI values), the less energy is required to
perform such a movement, and vice-versa. This also
confirms the interpretation of the arrows graph (Fig.
7), according to which the radial and tangential mo-
tions are more energy-effective when performed close
to and away from the robot base, respectively.

5 Conclusions

In this paper two novel performance indexes based
on the concept of inertia ellipsoid are proposed as
efficient tools for the analysis of the energy consump-
tion of robotic manipulators executing simple motion
tasks. The first performance index, i.e., the Local
Energy Index, relates the direction of motion of the
end-effector of the robot to its kinetic energy, whereas
the other index, referred to as Trajectory Energy In-
dex, extends this metric to a whole point-to-point
trajectory. The TEI is used to evaluate the effects
of the collocation of a simple motion task on the en-
ergy consumption of the robot, referring to a bench-
mark SCARA robot. The energy consumption of the
robot is evaluated thorough a detailed dynamic and
electro-mechanic model. Results show the effective
agreement between the energy consumption maps
and the TEI maps, computed for different point-
to-point primitive trajectories, highlighting that the
Trajectory Energy Index can be used with very lit-
tle approximation to define the optimal minimum-
energy task. Therefore, the proposed performance
index significantly reduces the computational burden
required to solve and integrate the robot dynamics.

The TEI can be used for practical task-dependent
analysis of the energy consumption of a manipula-
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Figure 8: Trajectory Energy Index maps: poly3 (a) and poly5 (b) joint space planning, poly3 (c) and poly5
(d) operative space planning.

tor, for example when the layout of the plant or the
robotic cell is designed. The method can give also
practical indications about the most efficient location
of a task: for a SCARA robot the radial motion is
the most efficient when operating close to the robot
base, whereas a tangential motion is to be preferred
when operating towards the external boundaries of
the workspace. The proposed performance index can
also be used at the robot design stage, for example
to maximize the performance in certain area of the
workspace or by making it more uniform across the
whole workspace.

The main limitation of the proposed index is
that the formulation cannot take into account
configuration-dependent contributions of gravita-

tional force. Therefore, the applicability of the
method is more meaningful when planar motions,
during which gravity is constant, are considered. Fur-
thermore, the trajectory optimization presented in
the paper is only valid for point-to-point motions.
Future developments of the work will include the ex-
tension of the proposed method to the case of non-
constant gravity (i.e., in the spatial case), and to the
case of generic multi-point and continuous trajecto-
ries.

References

[1] European Comission, 2012. Proposal for a di-
rective of the European Parliament and of the

13

This is a pre-print of the article: F. Vidussi, P. Boscariol, L. Scalera, A. Gasparetto
Local and trajectory-based indexes for task-related energetic performance optimization of robotic manipulators

Journal of Mechanisms and Robotics, 2021, 13.2: 021018 https://doi.org/10.1115/1.4049972



Table 2: Minimum-energy and minimum-TEI solutions.

Task Min Energy [J ] θ [rad] d [m] Min TEI θ [rad] d [m] Energy @ Min TEI [J ]
Poly3, joint space 37.14 1.71 .66 3.63 1.71 .66 37.14
Poly5, joint space 38.31 1.71 .66 3.66 1.71 .66 38.31
Poly3, operative space 37.74 1.85 .59 4.15 1.80 .59 37.82 (+0.21%)
Poly5, operative space 39.15 1.85 .59 4.19 1.78 .60 39.23 (+0.38%)

-0.2 0 0.2 0.4 0.6 0.8

x [m]

-0.4

-0.2

0

0.2

0.4

y
 [

m
]

Figure 9: Inertia ellipsoids (in blue) in the robot
workspace. The two tasks follow on average the mi-
nor and the major axes of the inertia ellipsoids re-
spectively, according to the TEI definition.

council amending directive 2012/27/EU on en-
ergy efficiency. https://eur-lex.europa.eu/

homepage.html.

[2] Kucukvar, M., Cansev, B., Egilmez, G., Onat,
N. C., and Samadi, H., 2016. “Energy-climate-
manufacturing nexus: New insights from the re-
gional and global supply chains of manufacturing
industries”. Applied energy, 184, pp. 889–904.

[3] International Federation of Robotics, 2019.
Executive Summary World Robotics 2019
Industrial Robots. https://ifr.org/

free-downloads/.

[4] Carabin, G., Wehrle, E., and Vidoni, R.,
2017. “A review on energy-saving optimization

methods for robotic and automatic systems”.
Robotics, 6(4), p. 39.

[5] Yin, H., Liu, J., and Yang, F., 2019. “Hy-
brid structure design of lightweight robotic arms
based on carbon fiber reinforced plastic and alu-
minum alloy”. IEEE Access, 7, pp. 64932–64945.

[6] Khalaf, P., and Richter, H., 2016. “Parametric
optimization of stored energy in robots with re-
generative drive systems”. In IEEE Int. Conf. on
Advanced Intel. Mechatronics, IEEE, pp. 1424–
1429.

[7] Scalera, L., Palomba, I., Wehrle, E., Gasparetto,
A., and Vidoni, R., 2019. “Natural motion for
energy saving in robotic and mechatronic sys-
tems”. Applied Sciences, 9(17), p. 3516.

[8] Scalera, L., Carabin, G., Vidoni, R., and Won-
gratanaphisan, T., 2019. “Energy efficiency in
a 4-DOF parallel robot featuring compliant ele-
ments”. International Journal of Mechanics and
Control, 20(2).

[9] Iwamura, M., and Schiehlen, W., 2016. “Con-
trol and experiments with energy-saving scara
robots”. In Symposium on Robot Design, Dy-
namics and Control, Springer, pp. 153–161.

[10] Deepak, S. R., and Ananthasuresh, G., 2012.
“Perfect static balance of linkages by addition
of springs but not auxiliary bodies”. J. of Mech.
and Rob., 4(2), p. 021014.

[11] Richiedei, D., and Trevisani, A., 2020. “Op-
timization of the energy consumption through
spring balancing of servo-actuated mechanisms”.
Journal of Mechanical Design, 142(1).

14

This is a pre-print of the article: F. Vidussi, P. Boscariol, L. Scalera, A. Gasparetto
Local and trajectory-based indexes for task-related energetic performance optimization of robotic manipulators

Journal of Mechanisms and Robotics, 2021, 13.2: 021018 https://doi.org/10.1115/1.4049972



[12] Karimi Eskandary, P., Belzile, B., and An-
geles, J., 2019. “Trajectory-planning and
normalized-variable control for parallel pick-
and-place robots”. Journal of Mechanisms and
Robotics, 11(3).

[13] Boscariol, P., and Richiedei, D., 2019. “Energy-
efficient design of multipoint trajectories for
cartesian robots”. The Int. Journal of Advanced
Manufacturing Technology, 102(5-8), pp. 1853–
1870.

[14] Carabin, G., Vidoni, R., and Wehrle, E., 2018.
“Energy saving in mechatronic systems through
optimal point-to-point trajectory generation via
standard primitives”. In Int. Conf. of IFToMM
ITALY, Springer, pp. 20–28.

[15] Paes, K., Dewulf, W., Vander Elst, K., Kellens,
K., and Slaets, P., 2014. “Energy efficient trajec-
tories for an industrial ABB robot”. Proc. Cirp,
15, pp. 105–110.

[16] Ho, P. M., Uchiyama, N., Sano, S., Honda, Y.,
Kato, A., and Yonezawa, T., 2014. “Simple mo-
tion trajectory generation for energy saving of
industrial machines”. SICE J. of Contr., Meas.,
Syst. Int., 7(1), pp. 29–34.

[17] Patel, S., and Sobh, T., 2015. “Manipulator per-
formance measures-a comprehensive literature
survey”. Journ. of Int. & Rob. Systems, 77(3-4),
pp. 547–570.

[18] Asada, H., 1984. “Dynamic analysis and design
of robot manipulators using inertia ellipsoids”.
In Proc. Int. Conf. on Rob. and Autom., IEEE,
pp. 94–102.

[19] Yoshikawa, T., 1985. “Manipulability of robotic
mechanisms”. The Int. Jour. of Rob. Research,
4(2), pp. 3–9.

[20] Kim, J.-O., and Khosla, K., 1991. “Dexterity
measures for design and control of manipula-
tors”. In Int. Workshop on Int. Rob. and Syst.,
IEEE/RSJ, pp. 758–763.

[21] Klein, C. A., and Blaho, B. E., 1987. “Dexterity
measures for the design and control of kinemat-
ically redundant manipulators”. Int. J. of Rob.
Res., 6(2), pp. 72–83.

[22] Tanev, T., and Stoyanov, B., 2000. “On the per-
formance indexes for robot manipulators”. Prob-
lems of engineering cybernetics and robotics, 49,
pp. 64–71.

[23] Kim, S.-G., and Ryu, J., 2003. “New dimension-
ally homogeneous jacobian matrix formulation
by three end-effector points for optimal design
of parallel manipulators”. IEEE Transactions on
Robotics and Automation, 19(4), pp. 731–736.

[24] Altuzarra, O., Salgado, O., Petuya, V., and
Hernández, A., 2006. “Point-based jacobian for-
mulation for computational kinematics of ma-
nipulators”. Mechanism and machine theory,
41(12), pp. 1407–1423.

[25] Pond, G., and Carretero, J. A., 2006. “Formu-
lating jacobian matrices for the dexterity anal-
ysis of parallel manipulators”. Mechanism and
Machine Theory, 41(12), pp. 1505–1519.

[26] Ruggiu, M., 2010. “Kinematic and dynamic
analysis of a two-degree-of-freedom spherical
wrist”. Journal of Mechanisms and Robotics,
2(3), p. 031006.

[27] Merlet, J.-P., 2006. “Jacobian, manipulabil-
ity, condition number, and accuracy of parallel
robots”. Journal of Mechanical Design, 128(1),
pp. 199–206.

[28] Li, Q., Zhang, N., and Wang, F., 2017. “New
indices for optimal design of redundantly actu-
ated parallel manipulators”. Journal of Mech.
and Rob., 9(1), p. 011007.

[29] Boschetti, G., and Trevisani, A., 2018. “Cable
robot performance evaluation by wrench exer-
tion capability”. Robotics, 7(2), p. 15.

[30] Khalilpour, S. A., Loloei, A. Z., Taghirad, H. D.,
and Masouleh, M. T., 2013. “Feasible kinematic

15

This is a pre-print of the article: F. Vidussi, P. Boscariol, L. Scalera, A. Gasparetto
Local and trajectory-based indexes for task-related energetic performance optimization of robotic manipulators

Journal of Mechanisms and Robotics, 2021, 13.2: 021018 https://doi.org/10.1115/1.4049972



sensitivity in cable robots based on interval anal-
ysis”. In Cable-Driven Parallel Robots. Springer,
pp. 233–249.

[31] Seriani, S., Gallina, P., and Gasparetto, A.,
2014. “A performance index for planar repet-
itive workspace robots”. Journal of Mech. and
Rob., 6(3), p. 031005.

[32] Rosenstein, M. T., and Grupen, R. A., 2002.
“Velocity-dependent dynamic manipulability”.
In Proc. Int. Conf. on Rob. and Autom., Vol. 3,
IEEE, pp. 2424–2429.

[33] Kurazume, R., and Hasegawa, T., 2006. “A new
index of serial-link manipulator performance
combining dynamic manipulability and manip-
ulating force ellipsoids”. IEEE Trans. on Rob.,
22(5), pp. 1022–1028.

[34] Dos Santos, R. R., Steffen, V., and Saramago,
S. d. F. P., 2010. “Optimal task placement of a
serial robot manipulator for manipulability and
mechanical power optimization”. Int. Inform.
Management, 2(09), p. 512.

[35] Boschetti, G., Rosa, R., and Trevisani, A.,
2013. “Optimal robot positioning using task-
dependent and direction-selective performance
indexes: General definitions and application to
a parallel robot”. Rob. and Comp.-Int. Manuf.,
29(2), pp. 431–443.

[36] Ur-Rehman, R., Caro, S., Chablat, D., and
Wenger, P., 2010. “Multi-objective path place-
ment optimization of parallel kinematics ma-
chines based on energy consumption, shaking
forces and maximum actuator torques: Applica-
tion to the orthoglide”. Mechanism and Machine
Theory, 45(8), pp. 1125–1141.

[37] Boscariol, P., Scalera, L., and Gasparetto, A.,
2019. “Task-Dependent Energetic Analysis of
a 3 dof Industrial Manipulator”. In Int. Conf.
on Robotics in Alpe-Adria Danube Region,
Springer, pp. 162–169.

[38] Park, R. H., 1929. “Two-reaction theory of
synchronous machines generalized method of

analysis-part i”. Transactions of the American
Institute of Electrical Engineers, 48(3), pp. 716–
727.

[39] Paryanto, Brossog, M., Bornschlegl, M., Franke,
J., et al., 2015. “Reducing the energy consump-
tion of industrial robots in manufacturing sys-
tems”. The Int. Journ. of Adv. Manuf. Techn.,
78(5-8), pp. 1315–1328.

[40] Meike, D., Pellicciari, M., and Berselli, G., 2013.
“Energy efficient use of multirobot production
lines in the automotive industry: Detailed sys-
tem modeling and optimization”. IEEE Trans.
on Automation Science and Engineering, 11(3),
pp. 798–809.

[41] Al-Naseem, O., Erickson, R. W., and Carlin, P.,
2000. “Prediction of switching loss variations
by averaged switch modeling”. In 15th Applied
Power Electronics Conf. and Exp., Vol. 1, IEEE,
pp. 242–248.

[42] Biagiotti, L., and Melchiorri, C., 2008. Tra-
jectory planning for automatic machines and
robots. Springer Science & Business Media.

[43] Richiedei, D., and Trevisani, A., 2016. “Analyt-
ical computation of the energy-efficient optimal
planning in rest-to-rest motion of constant iner-
tia systems”. Mechatronics, 39, pp. 147–159.

16

This is a pre-print of the article: F. Vidussi, P. Boscariol, L. Scalera, A. Gasparetto
Local and trajectory-based indexes for task-related energetic performance optimization of robotic manipulators

Journal of Mechanisms and Robotics, 2021, 13.2: 021018 https://doi.org/10.1115/1.4049972


