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Abstract

The method proposed in this work is aimed at the
residual vibration suppression for uncertain flexible
systems. The approach, which is focused on enhanc-
ing robustness to unmeasured parametric deviations,
combines a motion design approach with a structural
modification approach. Both approaches are tested
with and without the explicit inclusion of robustness
constraints. The application to a numerical test case
is provided to highlight the advantages brought by
the concurrent approach. The results show that even
a minimal alteration to the motion profile and to the
physical properties of the plant to be moved can sig-
nificantly reduce the sensitivity to large mismatches
between the assumed and the actual plant.

1 Introduction

Ensuring high speed motion with minimal vibration
is still an open challenge for both mechatronics prac-
titioners and researchers. The lightweight design of
robots and automatic machines is aimed at reducing
inertia to boost operative speed, at the price of more
pronounced oscillatory phenomena. When improp-
erly controlled, vibration can cause all sorts of prob-
lems, including amplified mechanical stresses and re-
duced precision in the execution of a given motion.
In many cases the motion-induced oscillation can also
extend after motion completion: as such, they are
usually referred to as ’residual oscillations’. Resid-
ual oscillations are commonly found in underactuated
systems. While oscillations that happen during mo-

tion can be effectively damped by using one of the
countless control strategies developed for this pur-
pose [1, 5, 8], residual vibration suppression can be
obtained by a careful design of the reference input to
the control [16]. A wide range of solutions have been
proposed with this aim, however reviewing them is
outside of the scope of this work. Such a wide vari-
ety of solutions includes many methods, which can be
ranked in terms of their complexity. On the higher
end of the spectrum, both in terms of complexity
and effectiveness, several model-based methods can
be found [2]. Among them, many make use of cal-
culus of variation to set-up a motion design problem
as an optimal control one, by defining and solving a
TPBP (Two-Point Boundary Value Problem) [4,15].

On the opposite side of the spectrum one can find
several model-free approaches, in which, mainly, the
reduction of motion-induced vibrations is deputed to
the enhancement of the smoothness of the motion
profile [3, 7]. Generally these approaches are less ef-
fective that the model-based ones, but they apply
to a larger variety of situations. Their applicability
to all cases in which a dynamic model of the plant
to be dealt with is unavailable a clear advantage for
the practitioner over model-based methods. Within
a ’middle ground’, methods based on input shaping
and filtering techniques can be found. These meth-
ods can be classified as ’loosely model-based’ tech-
niques, as they generally require just a minimal rep-
resentation of the plant, typically by means of basic
data such as natural frequencies and damping fac-
tors. The most relevant and popular example is the
input shaping method, in the form of the Zero Vibra-
tion (ZV) shaper. or in the form of one of its many
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variations [11]. Shapers allow to alter any motion
profile allowing for nominal zero residual vibration.
The actual residual vibration suppression is however
limited by the modeling accuracy, which justifies the
development and use of robust shapers [12,14], which
retain an effective residual vibration reduction within
larger bounds of uncertainty.
Facing the robustness issue in motion design is the

topic of this work, which proposes to augment a well-
established approach, based on shaping techniques,
with an approach based on structural modification.
It is well known that the behaviour of a system is
determined by its eigenstructure, hence it is possible
to ’shape’ or ’enhance’ the behaviour of a system by
manipulating its eigenvalues and eigenvectors. Com-
monly these techniques are used to tune natural fre-
quencies [13], antiresonances [9], and damping ele-
ments [10], just to cite a few examples.
Here a structural modification approach is pro-

posed with the specific intent of enhancing the para-
metric robustness of a system. The test case of
choice, i.e. a pendulum with four degrees of free-
dom moved by the linear displacement of a cart, is
used to show how the robustness to unmodeled phys-
ical alterations can be tackled, both separately and
simultaneously, by acting on the design of the motion
profile as well as by acting on the physical alteration
of the plant.

2 Residual vibration suppres-

sion

2.1 Input shaping

As mentioned above, a simple and rather effective
technique for residual vibration suppression is based
on input shaping. Shaping techniques are based on
a simple concept: the cancellation of two oscillations
with equal amplitude and opposite phases. Let us
consider a generic rest-to-rest motion profile yr(t),
which is expected to produce some residual vibra-
tions when fed to a system that is assumed to be,
without loss of generality, a single DOF oscillatory
system. One way to null residual vibrations is to
convolve the original, henceforth ‘unshaped’, motion

profile yr with two properly timed pulses of proper
amplitudes: the resulting shaped reference will be
referred to as yr,s. Zero residual vibration can, in
this way, be obtained for any reasonable choice of yr.
The procedure just outlined refer to the popular ZV
shaper, which is defined by setting the amplitudes of
the two pulses as:

A1 =
1

1 + k
; A2 =

K

K + 1
; (1)

with k = e
−

ξπ
√

1−ξ2 and with a time delay between
the two pulses equal to τd/2, i.e. half the damped os-
cillation period sported by the plant. The ZV shaper
can be conveniently used whenever the estimated os-
cillating frequency ωd = 2π/τd and damping factor
ξ reflect the actual plant, but in the presence of rel-
evant model-plant mismatches, a residual oscillation
with an amplitude proportional to the modeling error
appears.

Whenever such error is too large to be tolerated,
other shapers can be used: the most common solu-
tion is represented by the ZVD (Zero Vibration and
Derivative) shaper. The latter is defined by enforcing
that the sensitivity of the residual oscillation ampli-
tude, V , evaluated with reference to the uncertain
natural frequency wd, i.e. ∂V/∂wd, is null. The ZVD
shaper requires three pulses [14], each on separated
from the previous one by τd/2, with amplitudes:

A1 =
1

1 + 2K +K2
; A2 =

2K

1 + 2K +K2
;

A3 =
K2

1 + 2K +K2
; (2)

It is worth noticing that the increased robustness
comes at a cost: the delay introduced by the ZVD
shaper (τd) is twice the one of the ZV shaper (τd/2).
This feature is relevant in all cases in which motion
time is comparable with τd, since often the unshaped
reference profile yr is ‘shortened’ to obtain a speci-
fied duration of the shaped signal yr,s. Shapers are
formulated for a single oscillatory frequency, but if
the plant has several frequencies to be damped, two
or more shapers can be simple cascaded.
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2.2 Structural modification

In this section a brief outline of the proposed proce-
dure for the structural optimization, with and with-
out robustness constraints, is given. The reader can
refer to the recent work [6] for a more detailed expla-
nation. Let us assume that the system whose proper-
ties are to be assigned by the structural modification
can be described as a N -DOFs undamped system by
the equation:

Mq̈(t) +Kq(t) = Bf(t) (3)

Matrices M, K and B are, respectively, the mass
matrix, the stiffness matrix and the force distribution
matrix. The external forces are collected in vector f.
Equation (3) can be re-written by switching to the
frequency domain as:

(

−ω2
n,iM+K

)

ui = 0 with i = 1, . . . , N (4)

in which appears the eigenpair (ωn,i,ui), as com-
posed by the i-th natural frequency ωn,i and the i-
th mode shape ui. The formulation in (4) is useful
to set-up an inverse dynamic structural modification
problem, which identifies the modifications ∆M and
∆K to matrices M and K needed to alter the i-th
eigenpair (ωn,i,ui) to (ω̄n,i, ūi). If just nd of the N
eigenpairs are requested to assume some specific val-
ues, the problem is referred to as a partial structural
modification problem, which can be defined, analyt-
ically, as:

(

−ω̄2
n,i (M+∆M) +K+∆K

)

ūi = 0 with i = 1, ..., nd

(5)
The solution of (5) is in general not trivial, so a

common approach is to replace it with the less chal-
lenging solution of the minimization problem:

min
x

nd
∑

i=1

∥

∥

(

−ω̄2
n,i (M+∆M(x)) +K+∆K(x)

)

ūi

∥

∥

2

2

s.t. xL
≤ x ≤ xU

∪ Ax = b

(6)
in which the set of parameter changes introduced

to obtain the desired eigenpairs is collected in vector

x. Such changes are assumed to be upper and lower
bounded, and subjected to some used-defined linear
constraints. The problem set in (5) and re-cast in (6)
is a ’nominal’ one, as it does not take into account
the possibility of any modeling discrepancy between
the theoretical model (as in (3)) and the actual one.
Modeling errors and unmeasured alterations can sig-
nificantly affect the effectiveness of the modifications
prescribed by solving (6). Hence, a robust counter-
part of the outlined procedure is needed. Sensitivity
functions are used, in the proposed method, to define
a robust partial assignment problem.

Sensitivity functions are the analytic representa-
tion of how the dynamics of a system is affected by
the change in value of one (or more) parameter [4]: in
particular here they are used to quantify the change
in the the desired i-th natural frequency as a result
of the change of the parameter ηj , hence they are
defined by the partial derivative:

S̄i,j =
∂ω̄2

n,i

∂ηj
=

ūT
i

(

−ω̄2
n,iJ

ηj

M+∆M
+ J

ηj

K+∆K

)

ūi

ūT
i (M(η) +∆M(x,η)) ūi

(7)

where the Jacobian matrices for the modified sys-
tem are:

J
ηj

M+∆M
=

∂ (M(η) +∆M(x,η))

∂ηj

J
ηj

K+∆K
=

∂ (K(η) +∆K(x,η))

∂ηj

(8)

The sensitivity function in (7) appears as S̄i,j since
such values can be set to a specific desired value
through the following equation:

Φ̄i,j(x,η, ūi) = 0 (9)

where:

Ni,j(x,η, ūi) = ūT
i

(

−ω̄2
n,iJ

ηj

M+∆M
+ J

ηj

K+∆K

)

ūi

Di,j(x,η, ūi) = ūT
i (M(η) +∆M(x,η)) ūi

Φ̄i,j(x,η, ūi) = Di,j(x,η, ūi)S̄i,j −Ni,j(x,η, ūi)
(10)
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Adding the constraint in (7) to (6) allows the def-
inition, by means of a constrained least square mini-
mization problem, of the robust partial optimization
problem as:

min
x

nd
∑

i=1

∥

∥

(

−ω̄2
n,i (M+∆M(η,x)) +K+∆K(η,x)

)

ūi

∥

∥

2

2

s.t. xL
≤ x ≤ xU

∪ Ax = b

uL
i
≤ ui ≤ uU

i

Φ̄(x,η, ū) = 0
(11)

Solving (11) allows defining a new system that is
hence modified by altering the parameters collected
in x to obtain that not only some natural frequencies
are set to specific values, but also by ensuring that the
desired frequencies are assigned with prescribed levels
of robustness. In this way any random alteration of
the parameter ηj does impact minimally ω̄n,i.
This procedure, which will be applied to a test case

in the following section, provides a further tool mini-
mize the residual vibration for a system characterized
by underactuation, undamped oscillations and uncer-
tainty.

3 Performance evaluation

3.1 Plant model

The system used to test, numerically, the effective-
ness of the proposed model comprises a 4-DOF pen-
dulum excited by the motion of a linearly displac-
ing cart, as shown in Fig. 1. The latter also spec-
ifies the vector of the four independent coordinates
q = [ϑ1, ϑ2, ϑ3, ϑ4]

T
used to model the angular dis-

placement of each mass of the pendulum. The input
of the dynamic model of the system is assumed to be
the cart acceleration ÿ. The model system dynamics,
written assuming small angular displacements, can
be written as:

Mq̈(t) +Kq(t) = Bÿ(t) (12)

with mass matrix M, stiffness matrix K and force
distribution vector B defined as:

M =









m1L1 m2L2 m3L3 m4L4

m2L2 m3L3 m4L4

m3L3 m4L4

m4L4

















L1

L1 L2

L1 L2 L3

L1 L2 L3 L4









(13)

K = g









m1 +m2 +m3 +m4

m2 +m3 +m4

m3 +m4

m4

















L1

L2

L3

L4









(14)

B = −









(m1 +m2 +m3 +m4)L1

(m2 +m3 +m4)L2

(m3 +m4)L3

m4L4









(15)

Figure 1: System model

This model is formally simple, and its matrix for-
mulation has a clear regular formulation, however an
analytic representation of the parameters relevant to
this works, i.e. the natural frequencies ω1, ω2, ω3

and ω4 is rather complex and hardly usable fo any
analytic manipulation. Table 1 shows the system pa-
rameters, referring to the ‘original’ system, i.e. the
one defined prior to any structural modification.

3.2 Robust structural modification

As mentioned before, the testbench pendulum eigen-
structure can be modified by means of the alteration
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Table 1: Original and modified system parameters

Value

Parameter Original Modified Unit

m1 0.1 0.206 kg
m2 0.1 0.4 kg
m3 0.1 0.165 kg
m4 0.1 0.1 kg
L1 0.35 0.7 m
L2 0.35 0.308 m
L3 0.35 0.255 m
L4 0.35 0.136 m
ωn,1 3.01 3.01 rad/s
ωn,2 6.99 7.01 rad/s
ωn,3 11.37 12.18 rad/s
ωn,4 16.22 14.49 rad/s

of its main parameters: here the goal is set to reduce
the sensitivity ∂ω2

n,1/∂m4 by 50%. This structural
modification is performed by solving the optimiza-
tion problem in (11): the vector of the tuning vari-
ables x includes the four lengths L1, L2, L3 and L4,
and the weight of the masses m1, m2 and m3. The
value of m4 is not included in x as it is the uncertain
parameter. Some constraints are included in the ac-
tual implementation of (11) in order to provide a fair
comparison between the ’original’ and the ’modified’
system: the overall length of the pendulum is fixed,
and the length of each cable section is bounded to
be within 0.07 m and 0.7 m. It is also assumed that
the weight of each mass can only be increased, up to
0.4 kg. The assignment of the natural frequencies is
partial, so that both pendulums share the same value
of the first natural frequency, i.e. ωn,1 = 3.01 rad/s.

The parameters of the modified system are listed
in Table 1, which shows that the first natural fre-
quency is kept unchanged by the application of the
structural modification. Although not reported, the
goal of halving the sensitivity ∂ω2

n,1/∂m4 is met with
success, as the actual reduction is equal to 52%.

The frequency response of the systems, evaluated
using as input the cart acceleration and as the output
the oscillation of mass m4, with and without the in-
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Figure 2: Frequency response of the tip mass oscilla-
tion - original and modified system

clusion of the structural modification that enhances
the robustness, are shown in fig. 2.

3.3 Robustness evaluation

The top graph shown in Fig. 3 shows the tip oscil-
lation when the cart is moved according to a generic
(i.e. ’unshaped’) rest-to-rest motion profile, here de-
fined as a quintic polynomial law with null initial and
final velocities and accelerations: large residual vibra-
tions appear after motion completion. Motion time
is set to 4 s and the overall cart displacement is set to
0.6 m. The bottom graph shows instead the effects
of applying the same motion profile, after filtering it
with four cascaded ZV shapers, to the nominal pen-
dulum with and without the alteration, by +20%, of
mass m4.

The results of this simple test highlight that the use
of ZV shapers leads to zero residual vibration only
if the natural frequency can be precisely predicted,
which does not happen whenever a single parameter,
such a mass m4 is altered form its nominal value.

The effects of the perturbation on the zero resid-
ual vibration goal attainment are usually captured
by sensitivity graphs, which plot the residual peak-
to-peak vibration amplitude vs the value of the un-
certain parameter, which is here (and for the rest of
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Figure 3: Top graph: resulting vibration for an un-
shaped motion profile. Bottom graph: oscillation for
a shaped motion profile, for the nominal and a per-
turbed system (m4 + 20%)

the paper as well), assumed to be the endpoint mass
m4. In all the tests whose results are included here,
the duration of the unshaped motion profile is pre-
compensated to keep the overall motion time, set to
Tf = 5 s, unaffected by the shaping action.

Here two of such graphs are included as Figures 4
and 5. The first one, shown in Fig. 4 displays the
amplitude of mass m4 oscillation vs. the perturba-
tion of its weight (within a ±30% range) when using
cascaded ZV shapers to filter the cart position ref-
erence signal. The dashed line refers to the original
system, the solid line to the modified one. The results
clearly show the sensible improvement brought from
the application of the robust structural modification:
the amplitude of residual vibrations, measured as the
swing of mass m4, is more than halved for any value
within the whole range of perturbations considered
in the test.

The improvement brought by the structural modi-
fication is even more evident when the reference sig-
nal is filtered by ZVD shapers: Fig. 5 show that the
approach that combines the enforcement of robust-
ness conditions both at shaper design level and at
system design level (by the proposed structural mod-
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Figure 4: ZV shaper: residual vibration amplitude
vs. ∆m4 - original and modified system

ification procedure) is very effective. The numerical
results show that residual vibrations are, in this case,
kept below 0.1 mm even when m4 is increased, or
decreased, by as much as 30%.

The motion profiles used to compute the sensitivity
graphs of Fig. 4 and 5 are displayed in Fig. 6, which
shows the speed and acceleration profiles generated
after the application of the ZV and ZVD shapers ac-
cording to the natural frequencies of the original sys-
tem. The motion profiles generated for the modified
system are not displayed, being very similar to the
ones represented in the graphs. As expected, the
application of robust shapers requires, in compari-
son with ’standard’ shapers, higher peak acceleration
values and the frequency content of the acceleration
signal is moved to higher frequencies. For this reason
shapers are usually scarcely effective whenever the
motion time is comparable to the oscillation periods
of the system to be damped [4].

Conclusion

In this paper the issue of residual vibration suppres-
sion for uncertain systems is dealt with. The pro-
posed method combines a robust approach to both
motion design and structural modification, with the
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Figure 5: ZVD shaper: residual vibration amplitude
vs. ∆m4 - original and modified system
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Figure 6: Speed and acceleration profiles with the
application of the ZV and ZVD shapers

aim of alleviating the problem of accurately estimat-
ing the model of a system to be actuated with min-
imal vibration excitation. The robustification, i.e.
the reduction of sensitivity to unmodeled parame-
ter changes, can be obtained, as shown in this work,
not only through robust input shaping, but also by
introducing some physical alterations to the system
to be moved with minimal residual vibrations. For
this aim a robust inverse dynamic structural mod-
ification procedure is cast by incorporating into the
design problem some constraints by means of the sen-
sitivity functions of the system to be moved. Nu-
merical results showcase the effectiveness of the pro-
posed robust structural modification approach which,
when combined the enhancement of the robustness
obtained at the motion design level, allows achieving
a relevant reduction of the residual vibration despite
the presence of sizeable unmodeled and unmeasured
parametric changes.
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