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Abstract
Conventional model-based design methods are often limited in their effectiveness by model-
plant discrepancy. A solution to this problem is proposed in this work to enhance the ro-
bustness of motion planning solution for systems affected by parametric uncertainty. The
method exploits a variational formulation in the form of a two-point boundary value problem
(TPBVP) in which the robustness is achieved as a constraint enforced at the two boundaries.
The formulation, which is specifically targeted at underactuated systems, aims at reducing
both the transient and residual vibrations, as well as at mitigating the actuation effort. The
development of the method is supported by its application to two numerical test-cases in the
form of a double pendulum on a cart and a translating flexible beam.

Keywords Model-based trajectory planning · Trajectory planning · Robustness ·
Underactuated system

1 Introduction

The execution of a precise and repeatable motion of underactuated systems while confining
both transient and residual oscillations represents a classic challenge of mechatronics. This
problem can be dealt with either as a control design problem or as a trajectory design one.
Formulating it as the latter is rather convenient in all situations in which the effectiveness of
the control system is limited by practical issues such as reduced actuator bandwidth or by
the impossibility of altering pre-programmed commercial control devices, just to cite two
common occurrences.

The literature on motion planning is extremely large and deeply rooted into engineering
practice and research, and hence a detailed analysis of such a large corpus of research is
well outside the scope of this work. However, it is still useful to mark a distinction between
model-free and model-based approaches.

Model-free approaches rely on the definition of trajectories/motion profiles indepen-
dently of the details of the dynamics of the system to be applied to. Commonly, such meth-
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ods make use of such methods as interpolation [14, 18, 32], and vibration reduction is mainly
achieved by enhancing the smoothness of the motion profile [12, 17]. These methods have
gained wide popularity mainly due to their simple implementation and for being suitable
to a wide array of applications. Currently they represent the de-facto standard choice for
industrial robots [6, 21].

Model-based methods, as the name suggests, make an explicit use of the dynamic model
of the system for which the trajectory is planned. In many cases such methods rely on trans-
lating a motion design problem into an optimal control one, enabling the use of numerous
and well-established methods belonging to the mature literature on optimal control [2, 31].

Model-based methods can be divided into direct and indirect trajectory optimization
methods [30]. Whenever a method uses a parametrized description of the kinematic quan-
tities of the system to transform an optimal control problem into a parameter optimization
problem, that method is commonly referred to as a direct one. Hence a finite-dimensional
optimization problem is solved in lieu of a more challenging one of infinite size, making
use of one of the countless solvers available for the purpose. The space of possible solution
is, within this method, reduced with the implicit acceptance of a trade-off between ease of
solution and optimality.

Indirect trajectory optimization methods, on the other hand, are based on the solution of
a ‘pure’ optimal control problem, usually resorting to the formulation and solution of a two-
point boundary value problem (TPBVP) using calculus of variations. A rather heterogeneous
collection of examples can cite applications of this method to multi-agent systems [13],
spacecrafts [34], electric vehicles [23], and industrial robots [15]. Indirect methods are often
praised for their accuracy but are often plagued by a small radius of convergence [5] and the
applicability to ‘small size’ problems. The latter is generally referred to as the ‘curse of
dimensionality’ [3]. Nonetheless, they still find some use whenever such limitations can
be circumvented. Another commonly recognized drawback of indirect methods, which is
shared with all optimal control methods, is the generally limited robustness to model-plant
mismatches. The literature on motion planning has been, over the years, less sensitive to this
issue in comparison with the control literature as robust control techniques are, by orders of
magnitude, more frequently investigated than robust motion design techniques.

One area in which the need for robustness has met the actual development of robust
solutions is input shaping. The techniques based on input shaping exploit some clever fil-
tering techniques to alter a predefined motion or force profile to obtain a specific target,
usually the limitation of residual oscillations. The literature on the topic has quickly recog-
nized the robustness issue, and several robust shapers have been introduced over the years
[22, 25, 29, 33]. The popularity of such methods is due to their several advantages such as
the applicability to a large range of applications and their straightforward implementation,
as well as their applicability in conjunction with standard motion planning techniques.

Shapers, both in the form of nominal and robust ones, are used in this work as a bench-
mark against which the proposed robust planning method is tested. The proposed method,
which is an indirect one, focuses on the definition of motion profiles for underactuated sys-
tems. In particular, it is aimed at mitigating not only residual oscillations, but also transient
ones with the addition of robustness constraints, which are included in the design problem
through sensitivity functions.

The application to two numerical test-cases, namely a double pendulum on a cart and
a translating beam, will showcase the noticeable improvement over classic shaping tech-
niques.
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2 System model formulation

The aim of this section is to establish a system dynamics formulation to be used for formulat-
ing and solving the robust motion design problem. Let us take into account an underactuated
mechanical system with n degrees of freedom (DOFs), which is represented by the vector
of n independent coordinates q. The dynamics of this system can be represented as a set of
n differential equations

Mq̈(t) = K(q) + G(q, q̇) + B(q)F(t), (1)

in which M ∈ R
n×n is the mass matrix, K ∈ R

n is the vector of position-dependent forces,
and G ∈ R

n collects gyroscopic and centrifugal forces, as well as damping forces. The
force distribution matrix B(q) ∈ R

n×m weighs the effects of the external forces collected
in F ∈R

m. According to the hypothesis of dealing with an underactuated system, m must be
smaller than n. Accordingly, q can be split into a vector qm of actuated DOFs and a vector
qu of the n − m underactuated DOFs, as in

[
Maa Mau

MT
au Muu

][
q̈a

q̈u

]
=

[
Ka(q)

Ku(q)

]
+

[
Ga(q, q̇)

Gu(q, q̇)

]
+

[
Ba

0

]
F. (2)

Equation (2) can be split into two contributions, one of which expresses the dynamics of
the n − m underactuated coordinates as follows:

q̈u = M−1
uu (Ku + Gu) − M−1

uu MT
auq̈a. (3)

Whenever B is a sparse matrix with more than n not-null entries, a formulation consistent
with the one in Eq. (2) can be defined by a proper QR decomposition, as described in the
work [4].

The formulation in Eq. (3) does not include the vector of actuation forces F, but it does
include the vector of accelerations of the actuated ones, i.e., q̈a . This testifies that the motion
of unactuated coordinates can be determined directly by ‘shaping’ the motion of the actuated
ones. By assuming this point of view, what is usually treated as a control problem can be
viewed as a motion design problem. Hence, the focus can be set on just Eq. (3), and the effect
of the actuation forces can be neglected. Therefore the motion of actuated DOFs alone can
be planned to achieve the desired properties for the unactuated ones.

Some care must, however, be taken as the dynamics of the actuators and of the control
loop system that ensures the tracking on the actuated DOFs qa cannot be always neglected.
In this case the planned and the executed motion of the actuated variable are different from
each other. To cope with this possibility, it can be assumed that the value of the actuated
variable qa is related to its reference value qref

a by means of a generic function h, as in

q̈a(t) = h(q̈ref
a (t)). (4)

Once a specific function h is defined, it can be included in the formulation of the system
dynamics:

[
q̈u

q̈a

]
=

[
M−1

uu (Ku(q) + Gu(q, q̇))

0

]
+

[−M−1
uu MT

au

I

]
h(q̈ref

a (t)), (5)

in which, again, the explicit dependence on the actuation force vector F is avoided. This
approach brings several practical advantages, the main one being the relaxation of the need
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for a detailed and accurate modeling of the system dynamics, which is often dependent on
complex and nonlinear effects such as those due to friction forces. A formulation which does
not explicitly depend on exogenous forces is also inherently more robust as each additional
parameter to be determined for modeling purposes brings an additional source of uncertainty
in the determination of its value.

Moreover, a strategy that revolves around the definition of a suitable reference profile is
generally of more straightforward practical implementation on the vast majority of commer-
cial/industrial devices, in which the control loop cannot be altered or fine-tuned to achieve
the desired performance improvement.

As stated before, the relationship h in Eq. (4) is arbitrary. Here it is chosen to balance the
complexity of representation with its physical meaningfulness by assuming that the control
loop can achieve a tracking without steady-state errors and with a finite bandwidth, as in
a system with a single dominant pole. Therefore the actuated degree of freedom q̈a (the
cart acceleration in this case) is related to its reference signal q̈

ref
a by the Laplace domain

relationship

Qa(s) = 1

sτ + 1
Qref (s), (6)

which can also be written in the time domain as follows:

...
qa(t) = 1

τ

(
q̈ref

a (t) − q̈a(t)
)
. (7)

Using this relationship in Eq. (5) provides the description of the dynamics of the system,
which includes the effect of the limited bandwidth of the controller and of the actuators
using the time constant τ as follows:

[
q̈u...
qa

]
=

[
M−1

uu (Ku(q) + Gu(q, q̇)) − M−1
uu MT

auq̈a

− q̈a

τ

]
+ 1

τ

[
0
I

]
q̈ref

a . (8)

This model has, as the only exogenous input, the acceleration reference signal q̈ref
a , which

will be designed according to the methodology that will be outlined in the next section.
This methodology requires a system representation in the form of a system of differential
equations indicated as f(x, t,v) (either a linear or a nonlinear one) with the state vector x
and the input vector v in the form

ẋ = f(x, t,v); x = [q̇u, q̈a, q̇a,qu,qa]T ; v = q̈ref
a ; (9)

f(x, t,v) being the first-order form of Eq. (8) obtained from it by adding a suitable number
of integrators:

f(x, t,v) =

⎡
⎢⎢⎢⎢⎢⎣

M−1
uu (Ku(q) + Gu(q, q̇)) − M−1

uu MT
auq̈a

− q̈a

τ
q̈a

q̇u

q̇a

⎤
⎥⎥⎥⎥⎥⎦

+ 1

τ

⎡
⎢⎢⎢⎢⎣

0
I
0
0
0

⎤
⎥⎥⎥⎥⎦ q̈ref

a . (10)
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3 Variational formulation of the robust motion design problem

Having defined a description of the dynamics of the system according to either a linear or
nonlinear state space form, we can use a variation formulation of the motion design prob-
lem. In particular, the motion design problem can be formulated and solved as a two-point
boundary value problem, in which the initial and final instants of the motion are captured by
the ‘left’ and ‘right’ boundary conditions.

Defining either partially or completely the two boundary conditions does not, however,
allow the definition of a specific trajectory as still infinite choices are available. Among this
infinite set of solutions for q̈ref

a (t), the one to be found will be the one that minimizes the
cost function

J =
∫ tf

t0

g (x, t,v) dt. (11)

The scalar cost function g can be chosen arbitrarily, but its design should reflect the
desired performance associated with the trajectory under development. The minimization of
the cost function in Eq. (11) must comply also with the dynamics of the system, otherwise
the planned motion would be infeasible. Collecting all constraints together results in the
following optimization problem:

min
x

J = min
∫ tf

t0

g (x, t,v) dt (12)

subject to

x(t0) = x0; x(tf ) = xf ; (13)

ẋ = f(x, t,v). (14)

Most commonly this kind of problem is solved using calculus of variations and Pon-
tryagin’s minimum principle (PMP) [24, 26]. The problem in Eqs. (12)–(14), once solved,
produces a trajectory which is optimal, feasible, and compliant with the prescribed bound-
ary values. However, this is true also in practical terms only if the actual plant is per-
fectly described by the dynamic model used in Eq. (14). For this reason, the problem in
Eqs. (12)–(14) can be referred to as a nominal trajectory design problem. Any mismatch
between the two systems—the actual one and the one used for planning—is neglected in the
formulation outlined so far.

A robust counterpart of the aforementioned problem can be formulated using the frame-
work defined in the previous work of one of the authors [8]. The methodology, which is
briefly recalled here, is well suited whenever one (or more) of the parameters included in
the plant dynamics formulation is affected by unmeasured or unmodeled variations, or sim-
ply it cannot be estimated with the needed level of accuracy. If the uncertain parameter is
referred to as μ, then its influence on the system dynamics can be represented by including
it within the system first-order differential equation description as follows:

ẋ(t) = f (x, t,v,μ) . (15)

If f is continuous in (x, t,μ) and is continuously differentiable w.r.t. x and μ for any
value of (x, t,u,μ) in the time frame [t0, t], then the system response can be evaluated as

x(t,μ) = x0 +
∫ t

t0

f(x, t̄ ,v,μ)dt̄ . (16)
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Since our aim is to quantify the effects of the change of μ on the system response, we
can compute the partial derivative of x w.r.t. μ as in

S(t) = ∂x(t)

∂μ
=

∫ t

t0

[
∂f(x, t,v,μ)

∂x
∂x(t,μ)

∂μ
+ ∂f(x, t,v,μ)

∂μ

]
dt.

S(t) is referred to as the vector of sensitivity functions of the system as it gauges the effect
of any deviation of the uncertain parameter μ on the state vector x(t). S(t) has many entries
as x(t) has times the number of uncertain parameters. Sensitivity functions can hence be
treated as the elements of a ‘supplementary’ state vector, as their dynamics is described by
a set of differential equations exactly as the original state vector does. For the same reason,
some metric of the sensitivity functions and some constraints on them can be included in
the trajectory design problem structured as in Eq. (12)–(14) after having recognized that
reducing the magnitude of sensitivity functions has the effect of reducing the impact of the
related uncertainties.

Although not shown here (the reader might refer to [19] for the details), it can be shown
that sensitivity functions do capture the first-order effects of the alteration of the parameter
μ to the system trajectory, as in

x(t,μ) ≈ x(t,μ0) + S(t) (μ − μ0) , (17)

μ0 being the nominal value of μ is recalled here to highlight that reducing the magnitude of
S(t) has the effects of reducing the impact of the mismatch between μ and μ0 on the time
evolution of the plant.

Here, sensitivities are altered by acting on the motion design, but a recent work has shown
that a similar target can also be tackled by introducing some physical alterations to the plant
by an inverse structural modification approach [9].

Since sensitivity functions are meant to be weighted and constrained within the robust
trajectory design problem, an augmented system dynamics is to be defined by stacking x(t)

and S(t) as the ‘robust’ state vector

xr (t) :=
[

x(t)

S(t)

]
(18)

whose dynamics is condensed as follows:

ẋr (t) = f r (x,S, t,v,μ) =
⎡
⎣ f(x, t,v,μ)

∂f(x, t,v,μ)

∂μ

⎤
⎦

μ=μ0

. (19)

The resulting robust trajectory design problem, as suggested in [8], can therefore be cast
as

min
x,S

J r = min
x,S

∫ tf

t0

gr (x, t,v,μ)dt (20)

subject to

x(t0) = x0; x(tf ) = xf ; (21)

S(t0) = S0; S(tf ) = Sf ; (22)
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ẋ = f(x, t,v,μ) (23)

Ṡ = ∂f(x, t,v,μ)

∂μ
(24)

The function gr in Eq. (20) has the same role as g in Eq. (12), i.e., to define the cost
function to be minimized.

When compared with its nominal counterpart, the problem above includes an additional
constraint (24) and two additional boundary conditions (22), which force sensitivities to
be null at the two most critical points of the trajectory, i.e., the initial and final one. The
latter, in particular, is rather important as the optimally designed trajectory will bring the
robustified system at t = tf to a configuration with zero sensitivity and hence with minimal
final error x(tf ,μ) − x(tf − μ0), as can be shown using Eq. (17) when written for t = tf
and for S(tf ) = 0. This feature translates, in a vibrating system, into a trajectory, in which
residual oscillations due to parametric uncertainties are minimized, as will be shown in the
next sections through two numerical test-cases.

There are several ways of solving the optimization problem in Eqs. (20)–(23); here, the
classical method based on the enforcement of the PMP conditions is used. This requires the
formulation of the Hamiltonian of the system:

H = gr + λT fr (xr , t,v,μ) . (25)

The scalar Hamiltonian function includes the vector of the Lagrangian multipliers λ that
constrains the solution to the augmented system dynamics defined in Eq. (19). The three
conditions are, according to the PMP:

ẋr = ∂H
∂λ

; λ̇ = − ∂H
∂xr

; ∂H
∂v

= 0. (26)

As an analytic solution for this kind of problems is limited to a few simple problems,
it is far more common to seek for a numerical solution using a collocation method [7, 11]
or a shooting method [1, 10] just to cite a couple of possible options. The explicit integra-
tion of the system dynamics of Eq. (23)–(24) is not strictly needed as the TPBVP solver
takes care of enforcing the three PMP conditions of Eq. (26) with or without performing it
as, for example, in spectral methods. Here, the standard Matlab’s solver bvp5c, which is
based on collocation [26], is used for computing all the trajectories defined and tested in the
next sections. The solver parametrizes the system state and the control action as piecewise
sequences of fifth-order segments with C1 continuity by means of a collocation algorithm
[20]. The time needed to compute the trajectories that will be presented and analyzed in
Sects. 4 and 5 ranges between 1.27 s and 2.32 s: such results have been obtained by using a
laptop running Windows 10 with an Intel i5-8265U CPU with 8 GB of RAM.

As a final remark, it should be stated that the proposed method focuses on the mitigation
of the effects of parametric uncertainties, so it does not apply, at least directly, to prob-
lems with other sources (or representations) of uncertainties such as neglected dynamics or
additive noise.

4 Test-case 1: application to a double pendulum

4.1 System description and dynamic model

The first test-case consists of the planar double pendulum shown in Fig. 1. Two suspended
masses, m1 and m2, are connected to a translating cart through two cables whose lengths are
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Fig. 1 Sketch of the
double-pendulum crane

equal to L1 and L2. The system is actuated through the motion of the cart, which is the sole
actuated coordinate.

According to the formulation of Eq. (8), it is assumed that the control input, to be de-
signed through the proposed method, is the cart acceleration reference signal (i.e., v =
q̈

ref
a = ÿ

ref
cart ). The matrices of the dynamics models are the following ones:

Muu =
[

(m1 + m2)L1 + m2L2 cosϑ2 m2L2 cosϑ2

L2 + L1 cosϑ2 L2

]
(27)

Mau = [−(m1 + m2) cosϑ1 − cos (ϑ1 + ϑ2))
]

(28)

Ku =
[−g(m1 + m2) sinϑ1

−g sin(ϑ1 + ϑ2)

]
(29)

Gu =
[

m2L2(ϑ̇
2
1 + ϑ̇2

2 ) sinϑ2

−L1ϑ̇
2
1 sinϑ2

]
(30)

with the state vector x:

x(t) = [
ϑ̇1, ϑ̇2, ÿcart , ẏcart , ϑ1, ϑ2, ycart

]T
. (31)

The nominal values used in all tests are: L1 = 0.47 m, L2 = 0.391 m, m1 = 0.192 kg,
and m2 = 0.203 kg, while the time constant τ is set to 0.002 s. The uncertain parameter
is assumed to be L1, which is chosen as its perturbation does significantly affect both nat-
ural frequencies of the system ω1 and ω2. Therefore the sensitivity functions, formulated
according to Eq. (24), are partial derivatives made with reference to L1:

s1(t) = ∂ϑ1(t)

∂L1
; s2(t) = ∂ϑ2(t)

∂L1
;

ṡ1(t) = ∂ϑ̇1(t)

∂L1
; ṡ2(t) = ∂ϑ̇2(t)

∂L1
.

(32)

The augmented state vector is therefore

xr (t) = [
ϑ̇1, ϑ̇2, ÿcart , ẏcart , ϑ1, ϑ2, ycart , ṡ1, ṡ2, s1, s2

]T
. (33)
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Its dynamics is captured by the ‘robust’ first-order system that captures also the dynamics
of the sensitivity functions:

fr =

⎡
⎢⎢⎢⎣

f (x, t,v,μ)

∂M−1
uu (Ku + Gu)

∂L1
+ ∂M−1

uu MT
au

∂L1
q̈a

Ṡ (x,S, t,v,μ)

⎤
⎥⎥⎥⎦ + 1

τ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
I
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

q̈ref
a . (34)

4.2 Problem definition

The performance evaluation of the proposed method is conducted through numerical sim-
ulation and the comparison with two benchmark input shaping methods: the negative zero
vibration (NZV) shaper [28] and the zero vibration derivative (ZVD) shaper [27]. The goal
of the motion planning is to design a motion profile for rest-to-rest motion with negligible
residual and reduced transient oscillations, as well as with enhanced robustness. The re-
quirement of zero residual vibrations for the nominal case is obtained by imposing, in the
optimization problem, null values for ϑ1, ϑ2 and for their time derivatives at final time tf .
As for the transient behavior, it is required to reduce both the ‘average’ and the peak values
of the relative displacement between the cart and the end-point mass while ensuring reason-
ably small cart accelerations. To satisfy these requirements, the cost function g to be used
in Eqs. (12) and (20) has been defined as follows:

g = 1

2
v2 + β exp

(
(γ (L1 sin(ϑ1) + L2 sin(ϑ1 + ϑ2)))

2) . (35)

Such a definition of g trades off between the reduction of the acceleration reference signal
v(t), i.e., the control effort, and the load oscillation, which is weighed by the positive scalar
weight β and by the scaling factor γ . The robust counterpart of the motion planning algo-
rithm is set up with the same cost function, i.e., gr = g. The same formulation is adopted
in defining the cost function for the robust design problem, i.e., gr = g. The use of the
exponential emphasizes the peaks of the oscillation in the cost function, thus keeping them
small. In practice, it approximates a kind of minmax optimization problem within the frame
of the classical optimal control while allowing for a straightforward numerical solution. The
possibility of defining different objective functions to accomplish various secondary goals,
besides the usual requirement of zero residual vibration, is an important advantage of the
proposed approach over input shaping. Indeed, input shaping motion planning techniques
work by convolving an arbitrary reference signal with a sequence of impulses whose num-
ber, amplitudes, and times of application depend on the natural frequency and damping of
the vibrational modes to control, and on the desired robustness. Other control objectives,
such as reduction of the transient oscillations and of the control effort, should be obtained
by a clever selection of the original reference signal to be convolved with the shaper.

The problem of reducing transient oscillations and control effort by means of input shap-
ing is exacerbated in three cases. First, if the desired motion time is comparable with the
semiperiod of the damped oscillation in the case of nonrobust shapers or with the period
in the case of ZVD. Again, if increased desired robustness is needed, and in the presence
of more than one vibrational modes to be controlled. Indeed, the convolution of the un-
shaped reference with the shaper impulses introduces delays that are higher as the damped
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Table 1 Double pendulum: performance measurements

Test ÿmax [m/s2] ÿRMS [m/s2] ...
y max [m/s3] ...

y RMS [m/s3]

NZV, harmonic 0.308 0.123 – –

NZV, poly5 0.214 0.098 1.703 0.562

ZVD, harmonic 0.704 0.253 – –

ZVD, poly5 0.706 0.341 20.693 5.548

TPBVP, β = 0 0.334 0.184 3.730 1.064

TPBVP, β = 20 0.554 0.228 19.226 3.155

TPBVP, β = 50 0.703 0.283 25.557 4.192

frequency decreases. The number of such impulses is then higher for robust shapers and
for multi-mode shapers. The latter, indeed, are obtained by cascading two or more shapers,
each one tuned for a vibrational mode. Hence, the only way to retain the original motion
time is to pre-compensate the overall delay by reducing the time duration of the reference
signal prior to shaping. This feature can be a limiting factor when the overall time delay
is comparable with the required motion time since the unshaped motion profiles have very
high accelerations that cause high transient oscillations.

As far as the choice of shaper is concerned, the NZV shaper is here chosen for being
the nominal shaper that introduces the minimum amount of overall time delay, while the
ZVD shaper is chosen as the standard robust one. As far as the choice of the unshaped
motion profile is concerned, both shapers are used together with either a harmonic motion
profile or a fifth-degree polynomial profile (henceforth denoted poly5 for brevity). The first
one is chosen for being one of the standard profiles with lesser peak and RMS (root mean
square) acceleration, a feature that reduces transient oscillations. The poly5 profile is chosen
since it provides a smooth motion thanks to its continuous acceleration. The same design
specifications, i.e., an overall displacement of the cart equal to 0.3 m in 3 s, are used in
designing all the motion profiles.

4.3 Method application with unperturbed plant

The first comparison is set by focusing on the cart acceleration and jerk through their peak
and RMS values. These data are summarized in Table 1 that compares seven motion profiles:
four of them refer to the combination of the two shapers with the two mentioned unshaped
motion profiles; the other three refer to three different tunings of the robust TPBVP approach
proposed in this paper. In particular, β = 0, β = 20, β = 50, and γ = 500 have been set
to reflect with null, ‘small’, and ‘large’ weighting of the peak load sway according to the
formulation of the cost function in Eq. (35). The scaling factor γ is then set to 500 in all the
numerical results reported in this work as well.

Jerk values are not defined when the harmonic profile is involved since such a motion
primitive has a discontinuous acceleration. The analysis of the peak acceleration values
shows that using the NZV shaper with the poly5 reduces the acceleration; despite the smaller
accelerations of the unshaped harmonic motion primitive, the ‘overlapping’ acceleration
profiles due to the convolution with the shaper make the peak acceleration higher in the
case of harmonic profile. In contrast, the ZVD shaper results in the highest peak and RMS
accelerations as a result of the need to compensate for the delays introduced by the cascaded
shapers ω1 = 3.64 rad/s and ω2 = 9.02 rad/s, the total delays introduced by the shapers are
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Fig. 2 Planned cart speed
profiles: double pendulum (Color
figure online)

Fig. 3 Planned cart acceleration
profiles: double pendulum (Color
figure online)

equal to 0.808 s and 1.789 s, respectively. In the latter case the original motion profile has
to be ‘compressed’ to a duration of a mere 1.211 s.

The peak and RMS cart accelerations required by the robust TPBVP profiles significantly
change as β changes, since such a tuning parameter trades off between actuation effort (i.e.,
cart accelerations) and peak load sway reduction. The data in Table 1, however, show that
for any of the robust TPBVP profiles the peak value of the cart acceleration is still lower
than the value found for any of the robust shapers, at least as long as β does not exceed 50.
The value of β defines also the measures of the cart jerk: comparing the RMS jerk, which
is a common measure of the actual smoothness, shows that all three robust TPBVP profiles
produce a smoother motion profile than the one generated by the ZVD shapers.

The commanded cart speed and acceleration profiles are shown in Figs. 2 and 3, re-
spectively. Each figure shows in the upper plot the results related to input shaping and in
the lower graphs the results obtained by the robust TPBVP profiles. The acceleration plot
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Fig. 4 Double pendulum: load oscillation with unperturbed plant (Color figure online)

Table 2 Double pendulum: peak and RMS load oscillation, measured in [mm]

Test Transient peak Transient RMS Residual peak Residual peak �L1 = 20%

NZV, harmonic 12.798 8.005 0.065 3.357

NZV, poly5 15.843 9.763 0.107 4.996

ZVD, harmonic 16.588 8.919 0.099 1.014

ZVD, poly5 17.128 9.219 0.121 1.073

TPBVP, β = 0 19.557 10.109 1.310 · 10−4 1.317

TPBVP, β = 20 13.946 7.574 7.045 · 10−4 1.103

TPBVP, β = 50 13.929 7.239 9.367 · 10−4 1.321

clearly shows the discontinuous acceleration sported by the use of the harmonic with both
the shapers and the jerky motion required by the poly5 together with the ZVD.

The results of the application of the seven motion profiles designed are shown in Fig. 4,
which shows the time evolution of the oscillation of mass m2 around its equilibrium position
(computed as L1 sin(ϑ1) + L2 sin(ϑ1 + ϑ2)) in the case of an unperturbed plant. As far as
transient oscillation is concerned, the minimal peak value is found for the combination of
the harmonic motion profile and the NZV shaper. A just slightly larger peak oscillation is
found for the robust TPBVP profiles when β are 20 and 50, i.e., when the ‘minmax’ cost
function (35) is adopted. In this case, however, the small peak transient load sway is obtained
together with the smallest RMS transient oscillations and the increased robustness, which
cannot be achieved by the NZV shaper.

As for the load response after the motion completion, the residual oscillations are almost
zero for all the robust TPBVP profiles thanks to their accuracy that is often recognized as one
of their main advantages. In contrast, larger oscillations are found in all the tests exploiting
the shapers. This result is mainly caused by the rounding-off of the time of application of
the impulses used in the shapers that is approximated with a sample time equal to 1 ms. The
actual values of the load oscillations, written in terms of peak and RMS transient and residual
load sway, are reported for a more detailed evaluation of the performances in Table 2.
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Fig. 5 Double pendulum: peak residual and transient oscillation vs. L1 (Color figure online)

4.4 Method application with perturbed L1

The data in Table 2 also include the peak residual oscillation when the uncertain parameter
L1 is increased by 20%. This result provides a first indication on the robust performance with
respect to the variable adopted for defining the sensitivities. While all the profiles produce
rather small residual oscillation under nominal conditions, only robust design approaches
(both TPBVP and ZVD) ensure small residual oscillations, whose peaks are about one third
or one fourth of those obtained with the nominal methods.

The robustness performance of the investigated motion profiles can be analyzed in more
detail by observing the data plotted in Fig. 5. The graph on the left shows the peak residual
oscillation vs. the change of L1, whose nominal value is equal to 0.47 m. This graph shows
the sensitivity curves for all the motion profiles and highlights that the choice of the specific
cost function of Eq. (35) introduces also a trade-off between robustness enhancement and
transient oscillation reduction.

The graph on the right-hand side of Fig. 5 shows instead the sensitivity curves computed
for the peak value of transient oscillation, i.e., the load oscillation that happens during mo-
tion, which is an often overlooked measure in the literature on input shaping. The light blue
line, which refers to the robust TPVBP profile with β = 50, is the closest one to the ‘best’
one, which is the one related to the harmonic/NZV combination, at least in the proxim-
ity of nominal conditions. The robust performance of the robust TPBVP profiles degrades
sensibly whenever L1 is lower than 0.4 m: this feature highlights the complexity of the rela-
tionship found between several features and targets of the motion profile design procedure,
which must balance several objectives such as limited transient and residual oscillation and
the moderation of the ‘control’ effort. The availability of the tunable weighting factor β ,
however, aids the achievement of the desired trade-off.

4.5 Method application with random perturbations

Finally, all the motion profiles have been tested against several sources of uncertainties to
provide some information on the capability of each method of reacting to unmodeled per-
turbations. The outcomes of this Monte Carlo analysis are summarized in Fig. 6: the results
on the bar chart on the left report the peak value of transient oscillations in groups of eight
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Fig. 6 Comparison of performances with several sources of uncertainty within ±10% alteration from nominal
values (Color figure online)

tests: each test, from left to right, refers to the perturbation, by −10% and then by +10%, to
the parameters m1, m2, l1, and finally l2 from their nominal values. As far as the peak tran-
sient oscillation is concerned, the best solutions are still the ones based either on the NVD
shaper and the harmonic motion profiles or on the TBPVP solution with weighted transient
oscillations (for β = 50). It should be noted that almost identical results have been obtained
for all the perturbations.

The chart on the right-hand side of Fig. 6, in contrast, does show that the amplitude of
residual oscillation can be significantly affected in a different way by different perturbations.
In particular, such a graph shows that the nonrobust motion profiles obtained through the
NZV shaper are remarkably sensitive to changes of the rope lengths L1 and L2, while they
are less affected by alterations of similar magnitude of the two masses. As far as the robust
motion profiles are concerned, the two robust TPBVP profiles behave slightly worse than
the ones based on the ZVD: this occurrence might suggest that the ZVD shows the best
‘overall’ robustness.

All the results presented so far nonetheless showcase the effectiveness and the flexibility
of the proposed method, which can combine the robustness properties of a ZVD shaper with
the reduced transient oscillation amplitude achieved by a nonrobust shaper.

5 Test-case 2: application to a translating beam

5.1 System description and dynamic model

The second test-case consists of designing the optimal rest-to-rest motion for a planar trans-
lating slender beam actuated by a cart to obtain null residual oscillations and transient os-
cillations of minimal amplitude. The dynamic model of the translating beam is developed
according to the FEM-ERLS model, firstly developed and tested in the work [16]. This
model uses a finite element discretization to describe the elasticity of the beam, while the
concept of equivalent rigid-link system (ERLS) is used to represent the gross motion of the
cart and to introduce a moving reference for defining the small elastic displacements of the
beam. Such a formulation has been adopted since it directly leads to ordinary differential
equations in a straightforward way. To reduce model dimension, a single Euler–Bernoulli
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Fig. 7 Kinematic model of the
translating beam

beam element, with an additional tip mass, is adopted in this work and null longitudinal
displacements are reasonably assumed. As a result, the inertial and elastic properties of the
beam are represented, respectively, by a 4×4 mass matrix M and a 4×4 stiffness matrix K.
The elastic displacement of the beam as a result of its elasticity is represented therefore as
a set of four nodal elastic displacements: a lateral and a rotational finite displacement at the
base and at the tip of the beam.

The position of the end-effector of the cart is represented by ycart (t). Four nodal elastic
coordinates are initially adopted to represent the beam with free-free boundary conditions
and are expressed in the local reference frame of the ERLS:

u = [
u

y

1, u
z
1, u

y

2, u
z
2

]T
. (36)

The coordinates u
y

i are the nodal elastic deflections of the ith node and in the y direction,
while the uz

i are the elastic rotation in the xy plane with respect to the z axis, as shown in
Fig. 7. According to the model presented in [16], the dynamics of the system can be first
written as a system of five second-order differential equations:

[
M MJ

JT M JT MJ + Mc

][
ü

ÿcart

]
+

[
K 0
0 0

][
u

ycart

]
=

[
0
1

]
Fy, (37)

in which appears also the mass of the cart Mc , the force exerted on it by the actuator Fy ,
and the Jacobian matrix J , which is referred to as the matrix of nodal sensitivity coefficients
according to the nomenclature of [16]. Such a Jacobian matrix is used to relate the speeds
of the ERLS to the speeds of the generalized coordinates of the ERLS. In this case the only
generalized coordinate needed to describe the motion of the ERLS is the position of the cart
ycart (t). The system in Eq. (37) must then be changed to reflect the clamping conditions of
the beam: in this case both nodal displacements of the beam at the first node, i.e., u

y

1 and uz
1

must be set to zero and removed from Eq. (37).
In all cases in which JT MJ � Mc , the beam dynamics does not affect significantly the

cart dynamics, as in the case under consideration here, hence the generalized coordinate
ycart (t) can be considered, again, as the control input to the unactuated subsystem made
by the translating beam. Under this assumption, Eq. (37) can be replaced by the system of
differential equations

Mü(t) + Ku(t) = −MJÿcart (t). (38)

Recalling the formulation already developed in Sect. 2, it is straightforward to recognize
that q̈u = ü and that q̈a = q̈a = ÿcart are the vectors of unactuated and actuated accelerations,
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respectively. If, again, it is assumed that the dynamics of the closed-loop control that ensures
the cart motion tracking can be approximated by the first-order model already assumed in
Eq. (6), the equivalent of Eq. (8) can be written for the translating beam as follows:

Mau = JT ; Muu = M; (39)

Ku = K; Gu = 0. (40)

As for the previous test-case, the external control input is the acceleration reference signal

v = q̈ref
a = ÿ

ref
cart . (41)

The model in Eq. (9) requires a first-order formulation, which is obtained by adding
integrators to it according to the following state vector:

x = [u̇, ÿcart , ẏcart ,u, ycart ]
T ∈R

7. (42)

The model used for planning the motion of the beam is, as already stated, based on a
single finite element. This choice is motivated by two main issues: the first one is related
to the limitations of the numerical method used to solve the variational problems; the other
one is related to the frequency range imposed by the modeled actuator bandwidth. It must
be pointed out that the chosen state vector x(t) has seven entries, and each additional finite
element increase its size by 4. The same increase is also reflected in the number of sensitivity
functions, meaning that xr is increased by eight elements for each additional finite element.
Since each element of xr requires a Lagrangian multiplier to enforce the dynamic constraints
(see Eq. (26)), the size of the optimal control problem escalates quickly, with the number of
finite elements being of size 22, 38, and 54 for 1, 2, and 3 finite elements, respectively.

The increase in the number of finite elements, moreover, does not necessarily lead to a
better performance of the planning method. The main effect of a finer discretization of the
finite element modeling is the inclusion of a larger number of vibrational modes, but such
additional modes are actually relevant only if they lie within the bandwidth of the actuator,
which in the case under consideration is set by the time constant τ . Modes that exceed the
actuator bandwidth are minimally excited by the cart motion since frequency components
beyond the bandwidth cannot be executed accurately by the actuator; so, including them in
the model used for planning does not alter significantly the outcomes in real systems.

5.2 Problem definition

The planning procedure applied to the translating beam is, again, targeted at defining a rest-
to-rest motion with null residual oscillations and reduced transient oscillations. Moreover,
a robust performance is sought: the uncertain parameter is assumed to be the weight of the
concentrated mass located at the free end of the beam mP , whose value is embedded in the
mass matrix M used in Eqs. (38) and (9). mP being the uncertain parameter, the sensitivity
functions to be included in the extended dynamics formulations are:

s1(t) = ∂u2,y(t)

∂mP

; s2(t) = ∂u2,z(t)

∂mP

;
ṡ1(t) = ∂u̇2,y(t)

∂mP

; ṡ2(t) = ∂u̇2,z(t)

∂mP

.

(43)
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Table 3 Translating beam: performance measurements

Test ÿmax [m/s2] ÿRMS [m/s2] ...
y max [m/s3] ...

y RMS [m/s3]

NZV, harmonic 3.422 1.468 – –

NZV, poly5 3.418 1.216 54.346 18.438

ZVD, harmonic 11.267 4.421 – –

ZVD, poly5 12.824 5.349 316.739 107.693

TPBVP, β = 0 6.096 2.653 513.720 73.748

TPBVP, β = 20 7.361 2.623 728.325 95.465

TPBVP, β = 50 8.531 2.787 922.528 117.764

The state vector is defined as in Eq. (43) since, again, the motion of the cart is assumed to
be unaffected by the alteration of the physical properties of the beam. The augmented state
vector used to set up and solve the associated TPBVP will therefore be

xr = [u̇, ÿcart , ẏcart ,u, ṡ1, ṡ2, s1, s2]T ∈ R
11. (44)

The dynamic model of the translating beam augmented with sensitivities, i.e., to be used
for the robust motion planning procedure, is written as in Eq. (34), with the only difference
of having partial derivatives performed with reference to mP rather than to L1. As in the
other test-case, the approximate ‘minmax’ cost function of choice weighs the actual lateral
displacement of the beam tip u

y

2 using this formulation:

g = 1

2

(
q̈ref

a

)2 + β exp
((

γ u
y

2

))2
, (45)

which trades off, through the weight β , between the actuation effort and the peak transient
oscillations. The value γ = 500 has been used for all the computation of all the results
provided in this work. As in the other test-case, here gr = g, so both the nominal and the
robust motion planning problems use the same cost function.

The performance evaluation will involve the same benchmark planning procedures al-
ready defined for the previous test-case, i.e., using the same kind of motion profiles and the
same types of shapers. The design specifications call for a tighter planning as the motion of
the beam is set to cover a translation of the cart over a distance equal to 0.4 m in just 1 s. The
beam is made of aluminum, has a rectangular cross section equal to 2 × 23 mm, is 0.915 m
in length, and the nominal tip mass is mP = 10 g.

As already mentioned, the model used for planning is based on a single finite element dis-
cretization, and its natural frequencies are fn,1 = 1.53 Hz and fn,2 = 14.34 Hz. The model
used for evaluating the performance of the planned motion is, however, based on two finite
elements. As a result, the two models differ mainly by the fact that the second one has two
additional vibrational modes, located at f3 = 33.3 Hz and at f4 = 87.8 Hz: both of them ex-
ceed the actuator’s bandwidth set by the value τ = 0.02 s. The first two natural frequencies
are, instead, located at 1.57 Hz and 14.42 Hz The model used for testing the motion pro-
file, therefore, reflects a model-plant mismatch through both parametric uncertainties and
unmodeled dynamics.

5.3 Results

The first comparison of the outcome of the benchmark and proposed planning methods is
defined by the analysis of the data collected in Table 3. The data include some simple met-
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Fig. 8 Planned cart speed
profiles: translating beam (Color
figure online)

Fig. 9 Planned cart acceleration
profiles: translating beam (Color
figure online)

rics on the cart motion profile: the first column refers to the peak acceleration and shows
that the application of the ZVD shaper results in two largest values among the seven shown,
meaning that it implies a rather large actuation effort. The robust TPBVP profiles provide,
according to the same metric, a better performance, but the absolute best behavior is found
when planning with the NZV shaper. Differently from what has been observed in the other
test-case, and in particular shown in Table 1, the specific choice of the motion profile just
minimally alters the peak accelerations. A similar trend is observed also for the RMS ac-
celeration (see column 3): again the variational formulation offers a good middle ground
between the two solutions based on shapers. The cost to be paid for the reduction of accel-
eration is the noticeable increase in the peak and RMS jerk, meaning that the variational
formulation defines a profile that is less smooth than the one generated by the ZVD.

The actual planned motion profiles are represented in Figs. 8 and 9. The first figure shows
that the variational formulation defines a motion profile with a rather low peak speed, while
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Fig. 10 Translating beam: load oscillation with unperturbed plant (Color figure online)

Table 4 Slewing beam: peak and RMS load oscillation, measured in [mm]

Test Transient peak Transient RMS Residual peak Residual peak �mp = 50%

NZV, harmonic 38.729 23.912 1.271 10.338

NZV, poly5 46.938 29.309 1.311 15.435

ZVD, harmonic 58.980 34.383 0.455 2.613

ZVD, poly5 66.327 38.603 0.134 2.392

TPBVP, β = 0 46.042 24.822 0.026 2.308

TPBVP, β = 20 42.741 23.072 0.031 2.335

TPBVP, β = 50 40.945 22.080 0.036 2.376

the second one highlights the pronounced accelerations observed, for the same trajectories,
during the initial and final phases of the motion task.

The application of the planned motion profiles to the translating beam, performed in a
numerical environment, highlights the time evolution of the tip sways reported in Fig. 10.

As observed for the double pendulum test-case, the variational formulation is rather ef-
fective in confining the peak sway: the proposed robust formulation can reduce them below
5 cm, thus achieving values that are comparable with the ones based on the NZV shaper and
well below the ones associated with the ZVD shaper. A more precise evaluation of this issue
is provided in Table 4.

Figure 10 reveals the presence of some visible residual oscillations in the case of input
shaping, as corroborated by Table 4, whose frequency is both the one of the two modeled
vibrational modes (in particular the first one is the most evident in Fig. 10) and of the two
unmodeled ones as well. The excitation of the unmodeled dynamics is more evident in the
case of input shaping as the actuator bandwidth limitation is not taken into account, and thus
the planned motions can include high frequency content. This is exacerbated when the har-
monic motion profile is used because of the presence of acceleration discontinuities. On the
other hand, the robust TPBVP profiles, as shown in the left-hand side graph of Fig. 10 mini-
mally excite the two unmodeled natural frequencies: in this case their presence is minimally
relevant to the outcome of the simulations.
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Fig. 11 Translating beam: peak residual and transient oscillation vs. mP (Color figure online)

The robustness sported by the methods based on the NZV shaper is so limited that a
residual oscillation is observed even when the endpoint mass mP is left unaltered: as visible
in Fig. 11 and in Table 4, such an amplitude is around 1.31 mm. This occurrence is due to
the error introduced by the rounding-off of the time instants of application of the impulses of
the shapers and by the model-plant mismatches. Figure 11 also shows the sensitivities of the
residual oscillations to the change of tip mass mP : such sensitivities are rather uniform for
all robust profiles as in the worst case the amplitude due to a +50% alteration of mp is kept
below 2.4 mm, as listed in detail in Table 4. As far as residual oscillations are concerned
for null parametric perturbation, their amplitude is reduced by one order of magnitude when
switching from the nonrobust NZV shapers to the ZVD shapers and then again to the robust
TPBVP profiles. The latter, in practical, has the highest insensitivity to both unmodeled
dynamics and parametric uncertainties.

Finally, sensitivity curves have been evaluated and displayed in the right-hand side plot
of Fig. 11 to show how the amplitude of transient oscillation changes with the change of
endpoint mass mP within a ±50% range. The figure shows that the most effective way of
reducing transient oscillations is either using a robust TPBVP profiles with a large value of β

or using the NZV shaper and a harmonic motion profile. The second option, however, is not
suitable in all cases in which enhanced robustness is required by severe uncertainties. On the
other hand, the ZVD shaper provides a robust action although it does not have the capability
of confining peak transient oscillation as sported by the robust TPBVP profiles. Therefore,
the approach proposed in this paper seems capable of combining the best features of the
two other solutions, incorporating both the robustness of the ZVD shaper and the reduced
transient oscillations of the NZV shaper.

5.4 Method application with random perturbations

Finally, a general evaluation of the robustness to several sources of unmodeled uncertainties
is provided by means of Fig. 12 that summarizes the results of the Monte Carlo analysis. In
particular, all results are provided for changed to the beam length L by ±5% from its nom-
inal values, while endpoint mass mP and the Young modulus E are altered by ±10% from
their nominal values. As highlighted in the previous test-case, peak transient oscillations are
minimally affected by any of the perturbations. On the other hand, residual oscillations are
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Fig. 12 Comparison of performances with several sources of parametric uncertainty (Color figure online)

remarkably affected by the type of perturbation, as highlighted by the chart on the right-hand
side of Fig. 12. Changing the mass of the end-point mP affects by a very small amount the
amplitude of residual oscillations for any of the four robust motion profiles—in such cases
the ZVD and the proposed robust TPBVP profiles behave almost identically. They sport
also similar performances as the other parameters are changed, i.e., when either the beam
length L or the Young modulus E are altered, with a general improvement brought by the
robust TPBVP profiles. The robustness sported by the solutions based on the NZV is very
limited—this applies to any of the alteration included in Fig. 12, as observed in Fig. 11 for
the perturbation of just mass mP .

6 Conclusion

In this work a method for the design of motion profiles for underactuated multibody sys-
tems with enhanced parametric robustness has been presented. The method is based on the
definition of a robust optimization problem constrained to the plant dynamics, which is set
up with the aid of parametric sensitivity functions extracted from the dynamic model of the
plant and by exploiting Pontryagin’s minimum principle. The performances are assessed by
comparison with the application of NZV and ZVD shapers, showing that, for the case under
consideration, the proposed method has similar robustness properties of the widely adopted
ZVD shaper while requiring lower actuator effort and bandwidth. Additionally, a suitable
definition of the cost function adopted for the synthesis of the motion profile allows a signif-
icant reduction of the peak transient oscillation at the cost of a minor increase of the control
effort without compromising the robustness properties.
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